Management of Incidental Thyroid Nodules on Chest CT: Using Natural Language Processing to Assess White Paper Adherence and Track Patient Outcomes

医学 结核(地质) 放射科 超声波 生物 古生物学
作者
Ryan G. Short,Steven Dondlinger,Benjamin Wildman‐Tobriner
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (3): e18-e24 被引量:6
标识
DOI:10.1016/j.acra.2021.02.019
摘要

The purpose of this study was to develop a natural language processing (NLP) pipeline to identify incidental thyroid nodules (ITNs) meeting criteria for sonographic follow-up and to assess both adherence rates to white paper recommendations and downstream outcomes related to these incidental findings.21583 non-contrast chest CT reports from 2017 and 2018 were retrospectively evaluated to identify reports which included either an explicit recommendation for thyroid ultrasound, a description of a nodule ≥ 1.5 cm, or description of a nodule with suspicious features. Reports from 2018 were used to train an NLP algorithm called fastText for automated identification of such reports. Algorithm performance was then evaluated on the 2017 reports. Next, any patient from 2017 with a report meeting criteria for ultrasound follow-up was further evaluated with manual chart review to determine follow-up adherence rates and nodule-related outcomes.NLP identified reports with ITNs meeting criteria for sonographic follow-up with an accuracy of 96.5% (95% CI 96.2-96.7) and sensitivity of 92.1% (95% CI 89.8-94.3). In 10006 chest CTs from 2017, ITN follow-up ultrasound was indicated according to white paper criteria in 81 patients (0.8%), explicitly recommended in 46.9% (38/81) of patients, and obtained in less than half of patients in which it was appropriately recommended (17/35, 48.6%).NLP accurately identified chest CT reports meeting criteria for ITN ultrasound follow-up. Radiologist adherence to white paper guidelines and subsequent referrer adherence to radiologist recommendations showed room for improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wny发布了新的文献求助20
2秒前
Criminology34完成签到,获得积分0
2秒前
2秒前
yulong完成签到,获得积分10
3秒前
qu发布了新的文献求助10
5秒前
阔达宝莹完成签到,获得积分20
6秒前
笙笙完成签到,获得积分10
6秒前
窜天猴发布了新的文献求助10
7秒前
9秒前
背影完成签到 ,获得积分10
9秒前
李绍进完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
麻雀发布了新的文献求助10
13秒前
Owen应助疼痛采纳,获得10
13秒前
Liu完成签到,获得积分10
13秒前
烟花应助爱听歌的萍采纳,获得10
13秒前
hao完成签到,获得积分10
15秒前
科研通AI2S应助阔达宝莹采纳,获得10
15秒前
寻找组织应助dery采纳,获得30
16秒前
16秒前
16秒前
单薄归尘完成签到 ,获得积分10
16秒前
jj完成签到,获得积分10
17秒前
窜天猴完成签到,获得积分10
18秒前
welbeck完成签到,获得积分10
18秒前
21秒前
灵巧涵雁发布了新的文献求助10
22秒前
麻雀完成签到,获得积分10
22秒前
guanzhuang关注了科研通微信公众号
23秒前
Peter王完成签到,获得积分10
23秒前
zhangxf608完成签到,获得积分10
24秒前
通行证应助申生氏采纳,获得10
25秒前
小包谷完成签到,获得积分10
26秒前
斯文败类应助HuangJiajia_FZU采纳,获得10
26秒前
27秒前
大模型应助蛋烘糕采纳,获得10
28秒前
空气的味道完成签到,获得积分10
29秒前
浮游应助单薄书蕾采纳,获得10
30秒前
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385