清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hand gesture recognition via enhanced densely connected convolutional neural network

计算机科学 手势 卷积神经网络 瓶颈 手势识别 手语 人工智能 特征提取 特征(语言学) 桥接(联网) 深度学习 一般化 机器学习 模式识别(心理学) 语音识别 计算机网络 哲学 语言学 数学 数学分析 嵌入式系统
作者
Yong Tan,Kian Ming Lim,Chin Poo Lee
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:175: 114797-114797 被引量:85
标识
DOI:10.1016/j.eswa.2021.114797
摘要

• A taxonomy of vision-based hand gesture recognition in the literature is presented. • Model customization and data augmentation are explored to improve generalization. • Ablation study for the proposed model has been conducted. • Performance of the proposed model is evaluated on several hand gesture datasets. Hand gesture recognition (HGR) serves as a fundamental way of communication and interaction for human being. While HGR can be applied in human computer interaction (HCI) to facilitate user interaction, it can also be utilized for bridging the language barrier. For instance, HGR can be utilized to recognize sign language, which is a visual language represented by hand gestures and used by the deaf and mute all over the world as a primary way of communication. Hand-crafted approach for vision-based HGR typically involves multiple stages of specialized processing, such as hand-crafted feature extraction methods, which are usually designed to deal with particular challenges specifically. Hence, the effectiveness of the system and its ability to deal with varied challenges across multiple datasets are heavily reliant on the methods being utilized. In contrast, deep learning approach such as convolutional neural network (CNN), adapts to varied challenges via supervised learning. However, attaining satisfactory generalization on unseen data is not only dependent on the architecture of the CNN, but also dependent on the quantity and variety of the training data. Therefore, a customized network architecture dubbed as enhanced densely connected convolutional neural network (EDenseNet) is proposed for vision-based hand gesture recognition. The modified transition layer in EDenseNet further strengthens feature propagation, by utilizing bottleneck layer to propagate the features being reused to all the feature maps in a bottleneck manner, and the following Conv layer smooths out the unwanted features. Differences between EDenseNet and DenseNet are discerned, and its performance gains are scrutinized in the ablation study. Furthermore, numerous data augmentation techniques are utilized to attenuate the effect of data scarcity, by increasing the quantity of training data, and enriching its variety to further improve generalization. Experiments have been carried out on multiple datasets, namely one NUS hand gesture dataset and two American Sign Language (ASL) datasets. The proposed EDenseNet obtains 98.50% average accuracy without augmented data, and 99.64% average accuracy with augmented data, outperforming other deep learning driven instances in both settings, with and without augmented data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Perry完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
15秒前
27秒前
Tiger发布了新的文献求助10
34秒前
38秒前
量子星尘发布了新的文献求助10
54秒前
BINBIN完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
1分钟前
朝阳完成签到 ,获得积分10
1分钟前
心静自然好完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
naczx完成签到,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Tiger发布了新的文献求助10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
2分钟前
Tiger完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
瞬间完成签到 ,获得积分10
3分钟前
小蘑菇应助贪玩的笑阳采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
芙瑞完成签到 ,获得积分10
3分钟前
3分钟前
AmyHu完成签到,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
彭于晏应助苔藓采纳,获得10
3分钟前
青山完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
苔藓发布了新的文献求助10
4分钟前
方白秋完成签到,获得积分10
4分钟前
dada完成签到,获得积分10
4分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865745
求助须知:如何正确求助?哪些是违规求助? 3408304
关于积分的说明 10657160
捐赠科研通 3132300
什么是DOI,文献DOI怎么找? 1727517
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242