Metabolic GWAS‐based dissection of genetic bases underlying the diversity of plant metabolism

全基因组关联研究 遗传多样性 生物 计算生物学 鉴定(生物学) 遗传关联 多样性(政治) 植物代谢 基因组 代谢组 人口 关联映射 进化生物学 遗传学 生物技术 生物信息学 代谢组学 生态学 单核苷酸多态性 医学 基因 基因型 社会学 环境卫生 人类学 核糖核酸
作者
Chuanying Fang,Jie Luo
出处
期刊:Plant Journal [Wiley]
卷期号:97 (1): 91-100 被引量:154
标识
DOI:10.1111/tpj.14097
摘要

Summary Plants have served as sources providing humans with metabolites for food and nutrition, biomaterials for living, and treatment for pain and disease. Plants produce a huge array of metabolites, with an immense diversity at both the population and individual levels. Dissection of the genetic bases for metabolic diversity has attracted increasing research attention. The concept of genome‐wide association study ( GWAS ) was extended to studies on the diversity of plant metabolome that benefitted from the development of mass‐spectrometry‐based analytical systems and genome sequencing technologies. Metabolic genome‐wide association study ( mGWAS ) is one of the most powerful tools for global identification of genetic determinants for diversity of plant metabolism. Recently, mGWAS has been performed for various species with continuous improvements, providing deeper insights into the genetic bases of metabolic diversity. In this review, we discuss fully the achievements to date and remaining challenges that are associated with both mGWAS and mGWAS ‐based multi‐dimensional analysis. We begin with a summary of GWAS and its development based on statistical methods and populations. As variation in targeted traits is essential for GWAS , we review metabolic diversity and its rise at both the population and individual levels. Subsequently, the application of mGWAS for plants and its corresponding achievements are fully discussed. We address the current knowledge on mGWAS ‐based multi‐dimensional analysis and emerging insights into the diversity of metabolism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
mj完成签到,获得积分10
1秒前
bkagyin应助呆萌新之采纳,获得10
2秒前
2秒前
sss发布了新的文献求助10
4秒前
科研界地板砖完成签到,获得积分10
4秒前
4秒前
5秒前
甜美的从蓉完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
youlili发布了新的文献求助10
9秒前
9秒前
敏感草丛完成签到,获得积分10
10秒前
orixero应助大气的笑珊采纳,获得10
11秒前
11秒前
11秒前
周云龙完成签到,获得积分20
11秒前
DADA发布了新的文献求助10
12秒前
大模型应助FG采纳,获得10
14秒前
14秒前
Sunnig盈发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
CipherSage应助Condorzhang采纳,获得10
16秒前
Lixiang发布了新的文献求助10
16秒前
Orange应助dong采纳,获得10
16秒前
17秒前
19秒前
19秒前
19秒前
20秒前
wanci应助逝水采纳,获得10
21秒前
youlili完成签到,获得积分10
21秒前
wang发布了新的文献求助10
21秒前
chua1212123完成签到,获得积分10
22秒前
frr发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581607
关于积分的说明 14381381
捐赠科研通 4510179
什么是DOI,文献DOI怎么找? 2471686
邀请新用户注册赠送积分活动 1458093
关于科研通互助平台的介绍 1431812