亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence Based Hierarchical Clustering of Patient Types and Intervention Categories in Adult Spinal Deformity Surgery

医学 畸形 聚类分析 外科 人工智能 计算机科学
作者
Christopher P. Ames,Justin S. Smith,Ferrán Pellisé,Michael P. Kelly,Ahmet Alanay,Emre Acaroğlu,Francisco Javier Sánchez Pérez-Grueso,Frank Kleinstück,Ibrahim Obeid,Alba Vila-Casademunt,Christopher I. Shaffrey,Douglas C. Burton,Virginie Lafage,Frank J. Schwab,Christopher I. Shaffrey,Shay Bess,Miquel Serra‐Burriel
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (13): 915-926 被引量:126
标识
DOI:10.1097/brs.0000000000002974
摘要

Study Design. Retrospective review of prospectively-collected, multicenter adult spinal deformity (ASD) databases. Objective. To apply artificial intelligence (AI)-based hierarchical clustering as a step toward a classification scheme that optimizes overall quality, value, and safety for ASD surgery. Summary of Background Data. Prior ASD classifications have focused on radiographic parameters associated with patient reported outcomes. Recent work suggests there are many other impactful preoperative data points. However, the ability to segregate patient patterns manually based on hundreds of data points is beyond practical application for surgeons. Unsupervised machine-based clustering of patient types alongside surgical options may simplify analysis of ASD patient types, procedures, and outcomes. Methods. Two prospective cohorts were queried for surgical ASD patients with baseline, 1-year, and 2-year SRS-22/Oswestry Disability Index/SF-36v2 data. Two dendrograms were fitted, one with surgical features and one with patient characteristics. Both were built with Ward distances and optimized with the gap method. For each possible n patient cluster by m surgery, normalized 2-year improvement and major complication rates were computed. Results. Five hundred-seventy patients were included. Three optimal patient types were identified: young with coronal plane deformity (YC, n = 195), older with prior spine surgeries (ORev, n = 157), and older without prior spine surgeries (OPrim, n = 218). Osteotomy type, instrumentation and interbody fusion were combined to define four surgical clusters. The intersection of patient-based and surgery-based clusters yielded 12 subgroups, with major complication rates ranging from 0% to 51.8% and 2-year normalized improvement ranging from −0.1% for SF36v2 MCS in cluster [1,3] to 100.2% for SRS self-image score in cluster [2,1]. Conclusion. Unsupervised hierarchical clustering can identify data patterns that may augment preoperative decision-making through construction of a 2-year risk–benefit grid. In addition to creating a novel AI-based ASD classification, pattern identification may facilitate treatment optimization by educating surgeons on which treatment patterns yield optimal improvement with lowest risk. Level of Evidence: 4

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
49秒前
1分钟前
畅快代柔完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
等待的小蚂蚁完成签到,获得积分20
2分钟前
3分钟前
3分钟前
zhangyiyang完成签到,获得积分10
3分钟前
哲别发布了新的文献求助10
3分钟前
4分钟前
自觉凌蝶完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
Tameiki发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
kkk完成签到,获得积分10
6分钟前
wanci应助科研通管家采纳,获得10
6分钟前
6分钟前
8分钟前
daiyu发布了新的文献求助10
8分钟前
yang发布了新的文献求助10
8分钟前
zhangjianzeng完成签到 ,获得积分10
8分钟前
脑洞疼应助daiyu采纳,获得10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
Willow完成签到,获得积分10
8分钟前
paradox完成签到 ,获得积分10
9分钟前
9分钟前
科研辣鸡发布了新的文献求助10
9分钟前
yang发布了新的文献求助10
9分钟前
可可完成签到 ,获得积分10
10分钟前
ataybabdallah完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817003
关于积分的说明 15080857
捐赠科研通 4816417
什么是DOI,文献DOI怎么找? 2577345
邀请新用户注册赠送积分活动 1532342
关于科研通互助平台的介绍 1490952