Graph-Based Mining of In-the-Wild, Fine-Grained, Semantic Code Change Patterns

计算机科学 源代码 图形 编码(集合论) 语义变化 开源 数据挖掘 情报检索 人工智能 自然语言处理 软件 理论计算机科学 程序设计语言 集合(抽象数据类型)
作者
Hoan Anh Nguyen,Tien N. Nguyen,Danny Dig,Son Nguyen,Hieu Tran,Michael Hilton
标识
DOI:10.1109/icse.2019.00089
摘要

Prior research exploited the repetitiveness of code changes to enable several tasks such as code completion, bug-fix recommendation, library adaption, etc. These and other novel applications require accurate detection of semantic changes, but the state-of-the-art methods are limited to algorithms that detect specific kinds of changes at the syntactic level. Existing algorithms relying on syntactic similarity have lower accuracy, and cannot effectively detect semantic change patterns. We introduce a novel graph-based mining approach, CPatMiner, to detect previously unknown repetitive changes in the wild, by mining fine-grained semantic code change patterns from a large number of repositories. To overcome unique challenges such as detecting meaningful change patterns and scaling to large repositories, we rely on fine-grained change graphs to capture program dependencies. We evaluate CPatMiner by mining change patterns in a diverse corpus of 5,000+ open-source projects from GitHub across a population of 170,000+ developers. We use three complementary methods. First, we sent the mined patterns to 108 open-source developers. We found that 70% of respondents recognized those patterns as their meaningful frequent changes. Moreover, 79% of respondents even named the patterns, and 44% wanted future IDEs to automate such repetitive changes. We found that the mined change patterns belong to various development activities: adaptive (9%), perfective (20%), corrective (35%) and preventive (36%, including refactorings). Second, we compared our tool with the state-of-the-art, AST-based technique, and reported that it detects 2.1x more meaningful patterns. Third, we use CPatMiner to search for patterns in a corpus of 88 GitHub projects with longer histories consisting of 164M SLOCs. It constructed 322K fine-grained change graphs containing 3M nodes, and detected 17K instances of change patterns from which we provide unique insights on the practice of change patterns among individuals and teams. We found that a large percentage (75%) of the change patterns from individual developers are commonly shared with others, and this holds true for teams. Moreover, we found that the patterns are not intermittent but spread widely over time. Thus, we call for a community-based change pattern database to provide important resources in novel applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
wanci应助冷傲曼冬采纳,获得10
1秒前
zy86689492发布了新的文献求助10
3秒前
anz完成签到 ,获得积分10
3秒前
顾矜应助nan采纳,获得10
3秒前
4秒前
tosky完成签到,获得积分10
4秒前
Mr发布了新的文献求助10
4秒前
5秒前
yyt发布了新的文献求助10
5秒前
汉堡包应助现代绮玉采纳,获得30
5秒前
欧阳慧玲关注了科研通微信公众号
5秒前
6秒前
7秒前
一碗豚骨拉面完成签到,获得积分10
7秒前
anz关注了科研通微信公众号
7秒前
8秒前
8秒前
赵Zhao发布了新的文献求助10
8秒前
9秒前
汉堡包应助remoon1104采纳,获得10
9秒前
9秒前
LaTeXer应助科研通管家采纳,获得40
10秒前
浮游应助科研通管家采纳,获得30
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
curtisness应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
curtisness应助科研通管家采纳,获得10
11秒前
lilin完成签到,获得积分10
11秒前
VV发布了新的文献求助10
11秒前
思思完成签到,获得积分10
11秒前
Ava应助zhy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832067
求助须知:如何正确求助?哪些是违规求助? 4136828
关于积分的说明 12804779
捐赠科研通 3879675
什么是DOI,文献DOI怎么找? 2133835
邀请新用户注册赠送积分活动 1154016
关于科研通互助平台的介绍 1052386