已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:94 (5): 783-792 被引量:95
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助深海蓝鱼采纳,获得10
刚刚
丘比特应助图图采纳,获得10
2秒前
小龙发布了新的文献求助10
3秒前
青云天完成签到,获得积分20
4秒前
character577完成签到,获得积分10
4秒前
youngyang完成签到 ,获得积分10
4秒前
ontheway发布了新的文献求助10
4秒前
5秒前
Ken完成签到,获得积分10
5秒前
6秒前
Glitter完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
GingerF应助科研通管家采纳,获得50
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
BZPL完成签到,获得积分10
9秒前
活泼的向日葵完成签到,获得积分10
9秒前
lele完成签到,获得积分10
9秒前
读万卷书完成签到 ,获得积分10
9秒前
脑洞疼应助青云天采纳,获得10
9秒前
10秒前
充电宝应助看书采纳,获得10
11秒前
12秒前
橘橘橘子皮完成签到 ,获得积分10
12秒前
陈M雯发布了新的文献求助10
13秒前
淡然大米完成签到 ,获得积分10
13秒前
笙南发布了新的文献求助10
14秒前
NiceSunnyDay完成签到 ,获得积分10
14秒前
14秒前
隐形曼青应助老实天奇采纳,获得10
14秒前
臻酒完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763382
求助须知:如何正确求助?哪些是违规求助? 5541048
关于积分的说明 15404842
捐赠科研通 4899234
什么是DOI,文献DOI怎么找? 2635397
邀请新用户注册赠送积分活动 1583479
关于科研通互助平台的介绍 1538594