Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition

有害生物分析 光谱学 红外光谱学 农学 材料科学 化学 生物 植物 物理 天文 有机化学
作者
Zahra Basati,Bahareh Jamshidi,Mansour Rasekh,Yousef Abbaspour‐Gilandeh
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:203: 308-314 被引量:55
标识
DOI:10.1016/j.saa.2018.05.123
摘要

The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccalvintan完成签到,获得积分10
刚刚
科研通AI5应助boshi采纳,获得10
1秒前
1秒前
LHYoung完成签到,获得积分10
2秒前
CIXI完成签到,获得积分10
3秒前
完美世界应助shuangcheng采纳,获得10
3秒前
4秒前
cyia-完成签到,获得积分10
5秒前
7秒前
wangwenzhe发布了新的文献求助10
8秒前
受伤归尘发布了新的文献求助10
8秒前
9秒前
安静一曲完成签到 ,获得积分10
9秒前
vincy完成签到 ,获得积分10
10秒前
boshi发布了新的文献求助10
12秒前
Neko发布了新的文献求助10
13秒前
隐形曼青应助wangwenzhe采纳,获得10
13秒前
Survivor发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
yumiao发布了新的文献求助30
14秒前
15秒前
18秒前
动漫大师发布了新的文献求助10
20秒前
21秒前
shuangcheng完成签到,获得积分10
22秒前
23秒前
24秒前
Kelly发布了新的文献求助10
29秒前
29秒前
29秒前
柒柒_BX发布了新的文献求助10
31秒前
33秒前
科目三应助轻松的恋风采纳,获得10
33秒前
mm完成签到,获得积分10
35秒前
35秒前
万能图书馆应助学术蝗虫采纳,获得10
36秒前
搜集达人应助Survivor采纳,获得10
37秒前
yumiao发布了新的文献求助10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782317
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233193
捐赠科研通 3042700
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876