Biocatalysis for the pharmaceutical industry : discovery, development, and manufacturing

大肠杆菌 生物化学 硝化酶 荧光假单胞菌 定向进化 化学 生物催化 蛋白质工程 立体化学 生物 细菌 基因 遗传学 催化作用 离子液体 突变体
作者
Junhua Tao,Guo‐Qiang Lin,Andreas Liese
链接
摘要

Preface. 1 Enzymes and Their Synthetic Applications: An Overview. 1.1 Introduction. 1.2 Enzyme Families. 1.3 Enzyme Discovery and Optimization. 1.4 Enzyme Production. 1.5 Enzymes and Synthetic Applications. 1.5.1 Ketoreductases (EC 1.1.1.2). 1.5.2 Enoate Reductases or Ene Reductases (EC 1.3.1.16). 1.5.3 Oxygenases (EC. xxxx). 1.5.4 Alcohol Oxidases (EC 1.1.3.X). 1.5.5 Peroxidases (EC 1.11.1.X). 1.5.6 Halogenases (EC. xxxx). 1.5.7 Nitrilases (EC 3.5.5.1). 1.5.8 Nitrile Hydratases (EC 4.2.1.84). 1.5.9 Epoxide Hydrolases (EC 3.3.2.X). 1.5.10 !-Transaminases (EC 2.6.1.X). 1.5.11 Hydroxynitrile Lyases (EC 4.1.2.X). 1.5.12 Aldolases (EC. xxxx). 1.5.13 Glycosidases (EC. xxxx). 1.5.14 Glycosyltransferase (EC. xxxx). 1.6 Conclusions. 2 Expression Hosts for Enzyme Discovery and Production. 2.1 Introduction. 2.2 How to Choose an Expression System. 2.3 Prokaryotic Expression Systems. 2.3.1 Posttranslational Modification in Prokaryotes. 2.3.2 Escherichia coli. 2.3.3 Bacilli. 2.3.4 Pseudomonas fluorescens. 2.3.5 Other Prokaryotic Expression Systems. 2.4 Eukaryotic Expression Systems. 2.4.1 Yeasts. 2.4.2 Filamentous Fungi. 2.4.3 Insect/Baculovirus System. 2.4.4 Mammalian Cell Cultures. 2.4.5 Other Expression Systems. 2.5 Cell-Free Expression Systems. 2.6 Conclusions. 3 Directed Enzyme Evolution and High-Throughput Screening. 3.1 Introduction. 3.2 Directed Evolution Library Creation Strategies. 3.2.1 Random and Semi-Rational Mutagenesis. 3.2.2 Gene Shuffling. 3.3 Directed Evolution Library Screening/Selection Methods. 3.3.1 In Vivo Methods: Genetic Complementation. 3.3.2 In Vivo Methods: Chemical Complementation. 3.3.3 In Vivo Methods: Surface Display. 3.3.4 In Vitro Methods: Lysate Assay. 3.3.5 In Vitro Methods: Ribosome Display. 3.3.6 In Vitro Methods: In Vitro Compartmentalization. 3.3.7 Equipment/Automation. 3.4 Selected Industrial Examples. 3.4.1 Activity. 3.4.2 Thermostability. 3.4.3 Substrate Specificity. 3.4.4 Product Specificity. 3.4.5 Enantioselectivity. 3.5 Conclusions and Future Directions. 4 Applications of Reaction Engineering to Industrial Biotransformations. 4.1 Introduction. 4.2 Metabolic Bioconversion. 4.3 Enzymatic Biotransformations. 4.3.1 Cofactor Regeneration. 4.3.2 Racemic Mixtures. 4.3.3 Equilibrium Conversion. 4.3.4 By-Product Formation. 4.3.5 Substrate Inhibition. 4.3.6 Low Solubility. 4.4 Conclusions. 5 Chiral Synthesis of Pharmaceutical Intermediates Using Oxynitrilases. 5.1 Introduction. 5.2 HNL. 5.2.1 The Natural Function and Distribution of HNLs. 5.2.2 Classification of HNLs. 5.2.3 New HNLs and High-Throughput Screening. 5.3. Reaction of HNLs. 5.3.1 Reaction System. 5.3.2 Immobilization of Enzyme. 5.3.3 Continuous Reactors. 5.3.4 Henry Reaction. 5.4 Transformation of Cyanohydrins. 5.4.1 Transformation of Hydroxyl Group. 5.4.2 Transformation of Nitrile Group. 5.4.3 Intramolecular Reaction. 5.5 Summary. 6 Expanding the Scope of Aldolases as Tools for Organic Synthesis. 6.1 Directed Evolution and Rational Mutagenesis. 6.2 Reaction Engineering. 6.3 Broad Substrate Tolerance of Wild-Type Aldolases. 6.4 Conclusions. 7 Synthetic Applications of Ketoreductases and Alcohol Oxidases. 7.1 Ketoreductases. 7.1.1 Wild-Type Whole-Cell Biocatalysts. 7.1.2 Recombinant Whole-Cell Biocatalysts Overexpressing Catalytic Enzymes. 7.1.3 Isolated Enzyme. 7.2 Alcohol Oxidases. 7.2.1 Primary Alcohol Oxidases. 7.2.2 Secondary Alcohol Oxidases. 8 Applications of Nitrile Hydratases and Nitrilases. 8.1 Introduction. 8.2 NHase. 8.2.1 New NHases. 8.2.2 Applications. 8.3 Nitrilase. 8.3.1 New Nitrilases. 8.3.2 Applications. 8.4 Conclusions. 9 Biosynthesis of Drug Metabolites. 9.1 Introduction. 9.2 Metabolite Synthesis Using Mammalian Bioreactors. 9.2.1 Selection of In Vitro Systems. 9.2.2 Reaction Condition Optimization. 9.2.3 Large Scale Incubations. 9.2.4 Examples with Mammalian Bioreactors. 9.2.5 In Vivo Samples. 9.3 Metabolite Synthesis Using Microbial Bioreactors. 9.3.1 Microbial Bioreactors Used in Metabolite Structure Elucidation. 9.3.2 Microbial Bioreactors Used in Synthesis of Key Metabolites. 9.3.3 Strain Selection. 9.3.4 Microbial Glycoside Conjugation. 9.3.5 Large Scale Reactions. 9.3.6 Examples for Metabolite Synthesis with a Microbial Bioreactor. 9.4 Recombinant Enzyme Bioreactors. 9.4.1 Advantages of Using CYP Enzymes for Producing Drug Metabolites. 9.4.2 Human Cytochrome Biocatalysts. 9.4.3 Microbial CYP Enzymes. 9.5 Summary. 10 Application of Whole-Cell Biotransformation in the Pharmaceutical Industry. 10.1 Introduction. 10.1.1 Whole-Cell Biotransformation Processes Used in Commercial Production of Pharmaceuticals. 10.1.2 Application of Whole-Cell Biotransformation Process in the Synthesis of Chiral Pharmaceutical Intermediates. 10.2 Disadvantages of Whole-Cell Process Compared with the Isolated Enzyme Process. 10.2.1 Substrate Availability and Recovery of Products in Low Concentrations. 10.2.2 Undesirable Side Reactions. 10.2.3 Toxicity of Substrate and Product. 10.3 Advantages of Whole-Cell Process Compared with the Isolated Enzyme Process. 10.3.1 More Stable Sources than Isolated Enzymes. 10.3.2 Regeneration of Cofactors and Multi-Enzymes Reactions. 10.3.3 Diversity and Availability. 10.3.4 Reactions with Non-Commercially Available Isolated Enzymes for Preparative Scale Synthesis. 10.3.5 Cost Effectiveness and Ease of Operation. 10.4 Approaches to Address the Disadvantages of Whole-Cell Biotransformation. 10.4.1 Control of Substrate and Product Concentration by Absorbing Resins. 10.4.2 Immobilized-Cell Technology. 10.4.3 Aqueous-Organic Two-Phase System. 10.4.4 Genetic Engineering Approaches. 10.5 Conclusions. 11 Combinatorial Biosynthesis of Pharmaceutical Natural Products. 11.1 Introduction. 11.2 Combinatorial Biosynthesis: The Natural Way for Structural Diversity. 11.3 Examples of Combinatorial Biosynthesis of Pharmaceutical Natural Products. 11.3.1 Erythromycin (Polyketide Biosynthesis). 11.3.2 Daptomycin (Nonribosomal Peptide Biosynthesis). 11.3.3 Patellamide (Ribosomal Peptide Biosynthesis). 11.4 Summary and Perspectives. 12 Metabolic Engineering for the Development and Manufacturing of Pharmaceuticals. 12.1 Introduction. 12.2 Metabolic Engineering Tools. 12.2.1 Tools for the Cellular Metabolic Network Analysis. 12.2.2 Tools for Rational Genetic Modification. 12.3 Metabolic Engineering for the Development and Production of Polyketide Pharmaceuticals. 12.3.1 Biosynthesis of Polyketides. 12.3.2 Metabolic Engineering for Improved Erythromycin Production. 12.3.3 Metabolic Engineering for Overproduction of 6dEB in Heterologous Hosts. 12.3.4 Metabolic Engineering of Other Polyketides. 12.3.5 Development of Novel Polyketides for Drug Discovery. 12.4 Metabolic Engineering for the Production of -Lactam. 12.5 Metabolic Engineering for Isoprenoid Production. 12.5.1 Biosynthesis Pathway of Isoprenoids. 12.5.2 Metabolic Engineering for Enhancing Precursor Supply for Isoprenoid Production. 12.5.3 Metabolic Engineering for Artemisinine Development and Production. 12.5.4 Metabolic Engineering for Carotenoid Production. 12.5.5 Metabolic Engineering for Taxol Development and Production. 12.6 Conclusions. 13 Multimodular Synthases and Supporting Enzymes for Chemical Production. 13.1 Introduction. 13.2 Background. 13.2.1 Multimodular Synthase Architecture. 13.2.2 Natural Product Biosynthetic Cycle. 13.3 Metabolic Engineering of Megasynthases. 13.3.1 Daptomycin: Metabolic Engineering by Domain Swap. 13.3.2 Avermectin: Metabolic Engineering by Directed Fermentation. 13.4 Excised Domains for Chemical Transformations. 13.4.1 Function of Individual Domains, Domain Autonomy. 13.4.2 Cyclization. 13.4.3 Halogenation. 13.4.4 Heterocyclization/Aromatization. 13.4.5 Methylation. 13.4.6 Oxygenation. 13.4.7 Glycosylation. 13.5 Conclusions. 14 Green Chemistry with Biocatalysis for Production of Pharmaceuticals. 14.1 Introduction. 14.2 Enzymatic Resolutions: Higher Yields, Less Waste. 14.3 Bioreductions: Greener Ligands, Renewable Hydride Donors, No Metals. 14.3.1 Enzymatic Oxidations: Clean, Highly Selective and Catalytic. 14.4 CC Bond Formations: Atom Efficiency at Its Best. 14.5 Summary and Outlook. Index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BOBO完成签到,获得积分10
5秒前
kkk完成签到 ,获得积分10
7秒前
海边的曼彻斯特完成签到 ,获得积分10
8秒前
轩辕剑身完成签到,获得积分0
9秒前
mix完成签到 ,获得积分10
11秒前
智慧金刚完成签到 ,获得积分10
11秒前
12秒前
fwstu完成签到,获得积分10
25秒前
安琪完成签到 ,获得积分10
27秒前
29秒前
能干觅夏完成签到 ,获得积分10
31秒前
Jeffery426发布了新的文献求助10
34秒前
37秒前
zhugao完成签到,获得积分10
38秒前
41秒前
46秒前
成就的孤晴完成签到 ,获得积分10
47秒前
51秒前
55秒前
油菜花完成签到,获得积分10
55秒前
apt完成签到 ,获得积分10
57秒前
风华正茂发布了新的文献求助10
1分钟前
骐骥完成签到,获得积分10
1分钟前
Zheng完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
个性归尘应助胡楠采纳,获得30
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
ymxlcfc完成签到 ,获得积分10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
简单的易云完成签到,获得积分10
1分钟前
陈俊雷完成签到 ,获得积分10
1分钟前
Estella完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837567
求助须知:如何正确求助?哪些是违规求助? 3379673
关于积分的说明 10510121
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615