MicroRNA Profiling as a Methodology to Diagnose Ménière’s Disease: Potential Application of Machine Learning

外淋巴 感音神经性聋 医学 小RNA 耳硬化病 疾病 机器学习 听力损失 人工智能 生物信息学 听力学 病理 计算机科学 耳蜗 生物 基因 遗传学
作者
Matthew Shew,Helena Wichova,Andrés M. Bur,Devin C. Koestler,Madeleine St. Peter,Athanasia Warnecke,Hinrich Staecker
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:164 (2): 399-406 被引量:12
标识
DOI:10.1177/0194599820940649
摘要

Objective Diagnosis and treatment of Ménière’s disease remains a significant challenge because of our inability to understand what is occurring on a molecular level. MicroRNA (miRNA) perilymph profiling is a safe methodology and may serve as a “liquid biopsy” equivalent. We used machine learning (ML) to evaluate miRNA expression profiles of various inner ear pathologies to predict diagnosis of Ménière’s disease. Study Design Prospective cohort study. Setting Tertiary academic hospital. Subjects and Methods Perilymph was collected during labyrinthectomy (Ménière’s disease, n = 5), stapedotomy (otosclerosis, n = 5), and cochlear implantation (sensorineural hearing loss [SNHL], n = 9). miRNA was isolated and analyzed with the Affymetrix miRNA 4.0 array. Various ML classification models were evaluated with an 80/20 train/test split and cross‐validation. Permutation feature importance was performed to understand miRNAs that were critical to the classification models. Results In terms of miRNA profiles for conductive hearing loss versus Ménière’s, 4 models were able to differentiate and identify the 2 disease classes with 100% accuracy. The top‐performing models used the same miRNAs in their decision classification model but with different weighted values. All candidate models for SNHL versus Ménière’s performed significantly worse, with the best models achieving 66% accuracy. Ménière’s models showed unique features distinct from SNHL. Conclusions We can use ML to build Ménière’s‐specific prediction models using miRNA profile alone. However, ML models were less accurate in predicting SNHL from Ménière’s, likely from overlap of miRNA biomarkers. The power of this technique is that it identifies biomarkers without knowledge of the pathophysiology, potentially leading to identification of novel biomarkers and diagnostic tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liney完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
彭于晏应助kailan采纳,获得10
2秒前
美丽元风完成签到,获得积分10
3秒前
4秒前
zik发布了新的文献求助10
5秒前
Akim应助liney采纳,获得10
6秒前
yike完成签到,获得积分10
6秒前
善学以致用应助Ruby采纳,获得10
7秒前
dwd1w完成签到,获得积分10
7秒前
song_song完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6.1应助勤奋花瓣采纳,获得10
8秒前
呀哈哈发布了新的文献求助10
8秒前
星辰大海应助沉默的海露采纳,获得10
10秒前
10秒前
新晋学术小生完成签到 ,获得积分10
10秒前
cheyenne完成签到,获得积分10
11秒前
11秒前
领导范儿应助LONG采纳,获得10
11秒前
12秒前
12秒前
cj发布了新的文献求助10
12秒前
华仔应助yang1采纳,获得10
13秒前
14秒前
14秒前
数学情缘完成签到,获得积分10
14秒前
小蘑菇应助潮流季采纳,获得10
14秒前
15秒前
Matthew_G完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Jasper应助十又采纳,获得10
16秒前
零可林完成签到,获得积分10
16秒前
VK2801发布了新的文献求助10
17秒前
Wang1991发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
lululu完成签到 ,获得积分10
18秒前
高嘉发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5818925
求助须知:如何正确求助?哪些是违规求助? 5956287
关于积分的说明 15550897
捐赠科研通 4940701
什么是DOI,文献DOI怎么找? 2661139
邀请新用户注册赠送积分活动 1607487
关于科研通互助平台的介绍 1562431