计算机科学
控制流程图
任务(项目管理)
编码(集合论)
代表(政治)
人工智能
深度学习
图形
语义学(计算机科学)
数据结构
外部数据表示
机器学习
脆弱性(计算)
理论计算机科学
程序优化
数据建模
程序设计语言
软件工程
编译程序
经济
集合(抽象数据类型)
管理
法学
政治
计算机安全
政治学
作者
Guixin Ye,Zhanyong Tang,Huanting Wang,Dingyi Fang,Jianbin Fang,Songfang Huang,Zheng Wang
标识
DOI:10.1145/3410463.3414670
摘要
Deep learning is emerging as a promising technique for building predictive models to support code-related tasks like performance optimization and code vulnerability detection. One of the critical aspects of building a successful predictive model is having the right representation to characterize the model input for the given task. Existing approaches in the area typically treat the program structure as a sequential sequence but fail to capitalize on the rich semantics of data and control flow information, for which graphs are a proven representation structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI