PI3K/AKT/mTOR通路
蛋白激酶B
下调和上调
癌症研究
奶油
医学
免疫印迹
腺癌
前列腺素E2
细胞生长
信号转导
癌症
生物
内科学
细胞生物学
转录因子
生物化学
基因
作者
Jianjian Yang,Xue Wang,Yi Gao,Can Fang,Fan Ye,Bing Huang,Lequn Li
摘要
Cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin E2 (PGE2) possess tumor-promoting activity, and COX-2 is considered as a candidate for targeted cancer therapy. However, several randomized clinical trials using COX-2 inhibitors to treat advanced lung cancer have failed to improve survival indices. To employ a more effective therapeutic strategy to inhibit the COX-2-PGE2 axis in tumors, it is necessary to revisit the mechanism underlying the protumor effect of COX-2-PGE2.Immunohistochemistry was used to predict the expression and prognostic value of COX-2 in lung adenocarcinoma samples. The mRNAs or proteins expression of COX-2, pAKT1/2/3, pErk1/2 and pCREB were detected after different treatments by qPCR or Western blot. The impacts of PGE2 and some inhibitors on cell proliferation and migration ability were verified by CCK-8 and transwell assays, respectively.In this study, we first confirmed that COX-2 expression in tumor specimens is associated with the pathological stage of the disease. Next, using lung adenocarcinoma cell lines, we found that exogenous PGE2 induces the expression of COX-2 at the mRNA and protein levels. Moreover, downregulation of COX-2 expression restrained PGE2-induced cancer cell proliferation and migration. Mechanistic analysis revealed that PGE2 stimulation activates the PKA-CREB and PI3K-AKT pathways. Downregulation of CREB expression abrogated PGE2-induced COX-2 expression. Moreover, inhibition of PI3K-AKT signaling suppressed the activation of CREB and PGE2-induced COX-2 expression. Specific inhibitors for PI3K and AKT suppressed COX-2 mRNA expression in ex vivo cultures of tumor specimens with PGE2.Simultaneous targeting of COX-2 and PI3K-AKT effectively suppressed PGE2-induced cell proliferation and migration and both acted in a synergistic manner. Targeting the COX-2-PGE2 positive feedback loop may be therapeutically beneficial to lung adenocarcinoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI