Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging

肾细胞癌 医学 无线电技术 深度学习 人工智能 放射科 病理 计算机科学
作者
I. Xi,Yijun Zhao,Robin Wang,Marcello Chang,Subhanik Purkayastha,Ken Chang,Raymond Y. Huang,Alvin C. Silva,Martin Vallières,Peiman Habibollahi,Yong Fan,Beiji Zou,T. Gade,Paul J. Zhang,Michael C. Soulen,Zishu Zhang,Harrison X. Bai,S. William Stavropoulos
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (8): 1944-1952 被引量:122
标识
DOI:10.1158/1078-0432.ccr-19-0374
摘要

Abstract Purpose: With increasing incidence of renal mass, it is important to make a pretreatment differentiation between benign renal mass and malignant tumor. We aimed to develop a deep learning model that distinguishes benign renal tumors from renal cell carcinoma (RCC) by applying a residual convolutional neural network (ResNet) on routine MR imaging. Experimental Design: Preoperative MR images (T2-weighted and T1-postcontrast sequences) of 1,162 renal lesions definitely diagnosed on pathology or imaging in a multicenter cohort were divided into training, validation, and test sets (70:20:10 split). An ensemble model based on ResNet was built combining clinical variables and T1C and T2WI MR images using a bagging classifier to predict renal tumor pathology. Final model performance was compared with expert interpretation and the most optimized radiomics model. Results: Among the 1,162 renal lesions, 655 were malignant and 507 were benign. Compared with a baseline zero rule algorithm, the ensemble deep learning model had a statistically significant higher test accuracy (0.70 vs. 0.56, P = 0.004). Compared with all experts averaged, the ensemble deep learning model had higher test accuracy (0.70 vs. 0.60, P = 0.053), sensitivity (0.92 vs. 0.80, P = 0.017), and specificity (0.41 vs. 0.35, P = 0.450). Compared with the radiomics model, the ensemble deep learning model had higher test accuracy (0.70 vs. 0.62, P = 0.081), sensitivity (0.92 vs. 0.79, P = 0.012), and specificity (0.41 vs. 0.39, P = 0.770). Conclusions: Deep learning can noninvasively distinguish benign renal tumors from RCC using conventional MR imaging in a multi-institutional dataset with good accuracy, sensitivity, and specificity comparable with experts and radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dogontree发布了新的文献求助10
刚刚
清晨发布了新的文献求助10
1秒前
落山姬发布了新的文献求助10
1秒前
李建勋完成签到 ,获得积分10
2秒前
薯条完成签到,获得积分20
2秒前
Lee发布了新的文献求助10
2秒前
浪里小白龙完成签到,获得积分10
2秒前
scgfren发布了新的文献求助10
3秒前
3秒前
BARRY完成签到,获得积分10
3秒前
边边玥铭发布了新的文献求助10
3秒前
有知发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
烟花应助lzy采纳,获得10
4秒前
4秒前
5秒前
柠檬很酸发布了新的文献求助10
5秒前
我是老大应助infe采纳,获得10
5秒前
6秒前
sss发布了新的文献求助10
6秒前
英姑应助whoknowsname采纳,获得10
6秒前
送雨奇发布了新的文献求助200
6秒前
6秒前
7秒前
8秒前
无辜问玉完成签到,获得积分10
9秒前
游01发布了新的文献求助10
9秒前
wennuan0913完成签到 ,获得积分10
9秒前
啊旋发布了新的文献求助10
10秒前
行家啊完成签到,获得积分10
10秒前
我是老大应助Xuxr采纳,获得10
10秒前
呼呼完成签到,获得积分10
10秒前
啊张完成签到,获得积分10
10秒前
xxx发布了新的文献求助10
11秒前
11秒前
领导范儿应助dslnfakjnij采纳,获得10
11秒前
闫佳美发布了新的文献求助10
11秒前
11秒前
haha发布了新的文献求助10
12秒前
zzz333发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182