Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging

肾细胞癌 医学 无线电技术 深度学习 人工智能 放射科 病理 计算机科学
作者
I. Xi,Yijun Zhao,Robin Wang,Marcello Chang,Subhanik Purkayastha,Ken Chang,Raymond Y. Huang,Alvin C. Silva,Martin Vallières,Peiman Habibollahi,Yong Fan,Beiji Zou,T. Gade,Paul J. Zhang,Michael C. Soulen,Zishu Zhang,Harrison X. Bai,S. William Stavropoulos
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (8): 1944-1952 被引量:121
标识
DOI:10.1158/1078-0432.ccr-19-0374
摘要

Abstract Purpose: With increasing incidence of renal mass, it is important to make a pretreatment differentiation between benign renal mass and malignant tumor. We aimed to develop a deep learning model that distinguishes benign renal tumors from renal cell carcinoma (RCC) by applying a residual convolutional neural network (ResNet) on routine MR imaging. Experimental Design: Preoperative MR images (T2-weighted and T1-postcontrast sequences) of 1,162 renal lesions definitely diagnosed on pathology or imaging in a multicenter cohort were divided into training, validation, and test sets (70:20:10 split). An ensemble model based on ResNet was built combining clinical variables and T1C and T2WI MR images using a bagging classifier to predict renal tumor pathology. Final model performance was compared with expert interpretation and the most optimized radiomics model. Results: Among the 1,162 renal lesions, 655 were malignant and 507 were benign. Compared with a baseline zero rule algorithm, the ensemble deep learning model had a statistically significant higher test accuracy (0.70 vs. 0.56, P = 0.004). Compared with all experts averaged, the ensemble deep learning model had higher test accuracy (0.70 vs. 0.60, P = 0.053), sensitivity (0.92 vs. 0.80, P = 0.017), and specificity (0.41 vs. 0.35, P = 0.450). Compared with the radiomics model, the ensemble deep learning model had higher test accuracy (0.70 vs. 0.62, P = 0.081), sensitivity (0.92 vs. 0.79, P = 0.012), and specificity (0.41 vs. 0.39, P = 0.770). Conclusions: Deep learning can noninvasively distinguish benign renal tumors from RCC using conventional MR imaging in a multi-institutional dataset with good accuracy, sensitivity, and specificity comparable with experts and radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CIOOICO1发布了新的文献求助10
刚刚
刚刚
刚刚
从容沉鱼完成签到,获得积分20
刚刚
ZHZ发布了新的文献求助10
2秒前
华仔应助action采纳,获得10
2秒前
星辰大海应助直率的乐萱采纳,获得10
2秒前
3秒前
3秒前
Lucas应助于胜男采纳,获得10
3秒前
3秒前
4秒前
4秒前
孟丽敏发布了新的文献求助10
6秒前
7秒前
万能图书馆应助haitun采纳,获得10
7秒前
上官若男应助黑色幽默采纳,获得10
7秒前
wanayu发布了新的文献求助10
8秒前
哩哩李完成签到,获得积分10
8秒前
笑点低千雁完成签到,获得积分10
9秒前
SciGPT应助ming采纳,获得80
9秒前
花开四海发布了新的文献求助10
9秒前
义气的惜海完成签到,获得积分10
9秒前
Yr发布了新的文献求助10
9秒前
9秒前
qcf发布了新的文献求助10
10秒前
10秒前
哈哈哈哈酷酷酷完成签到,获得积分20
10秒前
10秒前
风趣的奇异果完成签到 ,获得积分10
11秒前
学术垃圾发布了新的文献求助10
11秒前
孟丽敏完成签到,获得积分20
11秒前
12秒前
紧张的友灵完成签到,获得积分10
12秒前
13秒前
13秒前
吃不胖的完成签到,获得积分10
13秒前
14秒前
14秒前
Redshift发布了新的文献求助10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034