Evaluation of Fraction Unbound Across 7 Tissues of 5 Species

脂肪组织 肝组织 骨骼肌 白色脂肪组织 生物 组织分布 亲脂性 药理学 化学 内科学 生物化学 内分泌学 医学 生理学
作者
Sangwoo Ryu,David A. Tess,George Chang,Christopher Keefer,Woodrow Burchett,Gregory S. Steeno,Jonathan J. Novak,Roshan Patel,Karen Atkinson,Keith Riccardi,Li Di
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:109 (2): 1178-1190 被引量:33
标识
DOI:10.1016/j.xphs.2019.10.060
摘要

Binding to various tissues and species is frequently assessed in drug discovery and development to support safety and efficacy studies. To reduce time, cost, and labor requirements for binding experiments, we conducted a large comparison study to evaluate the correlation of fraction unbound (fu) across 7 tissues of 5 species, including white adipose, brain, heart, kidney, liver, lung, and skeletal muscle of mouse, rat, dog, monkey, and human. The results showed that there were no significant species differences of fu for tissue binding, and a single-species (e.g., rat) tissue fu can be used as a surrogate for binding in other species. Cross-tissue comparison indicated that brain, heart, liver, and muscle had quite similar fu values; rat liver binding can be used as a surrogate for binding of the other 3 tissues without any scaling factors. Binding to adipose, kidney, and lung can also be estimated with rat liver fu with scaling factors. This study suggests that a single tissue of a single species (e.g., rat liver) is a good predictor for fu of other tissues of various species with or without scaling factors. Molecular size, lipophilicity, pKa, and topological polar surface area are important physiochemical properties influencing tissue fu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助追寻的问玉采纳,获得10
刚刚
Olivia发布了新的文献求助20
刚刚
刚刚
谦让的沛芹完成签到,获得积分10
刚刚
冯岗完成签到,获得积分10
刚刚
HPP完成签到,获得积分10
刚刚
在水一方应助man采纳,获得10
刚刚
刚刚
Lucas应助aaa采纳,获得10
1秒前
Leety完成签到 ,获得积分10
1秒前
方家竞发布了新的文献求助10
1秒前
Verdant_Official完成签到,获得积分10
1秒前
lax完成签到,获得积分10
1秒前
Lucas应助wangxiaolei采纳,获得20
2秒前
2秒前
完美梨愁完成签到 ,获得积分10
2秒前
顾公子完成签到,获得积分10
3秒前
3秒前
3秒前
Neilllllllllll完成签到,获得积分10
3秒前
大藜小妮完成签到,获得积分10
3秒前
大辉完成签到,获得积分10
3秒前
kk完成签到 ,获得积分10
4秒前
4秒前
alay完成签到,获得积分10
4秒前
4秒前
唔西迪西发布了新的文献求助10
4秒前
第一百零一个完成签到,获得积分10
5秒前
充电宝应助勤劳雪糕采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助胡志远采纳,获得10
6秒前
Silone完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
6秒前
田様应助嘻嘻嘻采纳,获得10
6秒前
7秒前
lcj发布了新的文献求助10
7秒前
7秒前
李超完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189134
求助须知:如何正确求助?哪些是违规求助? 4373301
关于积分的说明 13616122
捐赠科研通 4226689
什么是DOI,文献DOI怎么找? 2318386
邀请新用户注册赠送积分活动 1317069
关于科研通互助平台的介绍 1266842