计算机科学
马尔可夫决策过程
强化学习
调度(生产过程)
移动边缘计算
边缘计算
计算机网络
分布式计算
在线算法
GSM演进的增强数据速率
内容交付
数学优化
马尔可夫过程
延迟(音频)
服务器
算法
人工智能
统计
电信
数学
作者
Guanhua Qiao,Supeng Leng,Sabita Maharjan,Yan Zhang,Nirwan Ansari
标识
DOI:10.1109/jiot.2019.2945640
摘要
In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular edge computing and networks, with the aid of the flexible trilateral cooperations among a macro-cell station, roadside units, and smart vehicles. We formulate the joint optimization problem as a double time-scale Markov decision process (DTS-MDP), based on the fact that the time-scale of content timeliness changes less frequently as compared to the vehicle mobility and network states during the content delivery process. At the beginning of the large time-scale, the content placement/updating decision can be obtained according to the content popularity, vehicle driving paths, and resource availability. On the small time-scale, the joint vehicle scheduling and bandwidth allocation scheme is designed to minimize the content access cost while satisfying the constraint on content delivery latency. To solve the long-term mixed integer linear programming (LT-MILP) problem, we propose a nature-inspired method based on the deep deterministic policy gradient (DDPG) framework to obtain a suboptimal solution with a low computation complexity. The simulation results demonstrate that the proposed cooperative caching system can reduce the system cost, as well as the content delivery latency, and improve content hit ratio, as compared to the noncooperative and random edge caching schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI