A nomogram for predicting overall survival in patients with low‐grade endometrial stromal sarcoma: A population‐based analysis

列线图 医学 接收机工作特性 子宫内膜间质肉瘤 队列 一致性 肿瘤科 阿卡克信息准则 人口 曲线下面积 内科学 统计 间质细胞 数学 环境卫生
作者
Jie Wu,Huibo Zhang,Lan Li,Mengxue Hu,Liang Chen,Bin Xu,Qibin Song
出处
期刊:Cancer communications [Wiley]
卷期号:40 (7): 301-312 被引量:408
标识
DOI:10.1002/cac2.12067
摘要

Low-grade endometrial stromal sarcoma (LG-ESS) is a rare tumor that lacks a prognostic prediction model. Our study aimed to develop a nomogram to predict overall survival of LG-ESS patients.A total of 1172 patients confirmed to have LG-ESS between 1988 and 2015 were selected from the Surveillance, Epidemiology and End Results (SEER) database. They were further divided into a training cohort and a validation cohort. The Akaike information criterion was used to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using concordance index (C-index), area under time-dependent receiver operating characteristic curve (time-dependent AUC), and calibration plots. The net benefits of the nomogram at different threshold probabilities were quantified and compared with those of the International Federation of Gynecology and Obstetrics (FIGO) criteria-based tumor staging using decision curve analysis (DCA). Net reclassification index (NRI) and integrated discrimination improvement (IDI) were also used to compare the nomogram's clinical utility with that of the FIGO criteria-based tumor staging. The risk stratifications of the nomogram and the FIGO criteria-based tumor staging were compared.Seven variables were selected to establish the nomogram for LG-ESS. The C-index (0.814 for the training cohort and 0.837 for the validation cohort) and the time-dependent AUC (> 0.7) indicated satisfactory discriminative ability of the nomogram. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations in both the training and validation cohorts. The NRI values (training cohort: 0.271 for 5-year and 0.433 for 10-year OS prediction; validation cohort: 0.310 for 5-year and 0.383 for 10-year OS prediction) and IDI (training cohort: 0.146 for 5-year and 0.185 for 10-year OS prediction; validation cohort: 0.177 for 5-year and 0.191 for 10-year OS prediction) indicated that the established nomogram performed significantly better than the FIGO criteria-based tumor staging alone (P < 0.05). Furthermore, DCA showed that the nomogram was clinically useful and had better discriminative ability to recognize patients at high risk than the FIGO criteria-based tumor staging.A prognostic nomogram was developed and validated to assist clinicians in evaluating prognosis of LG-ESS patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiangtao应助weixi4457采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
tanlaker完成签到,获得积分10
3秒前
3秒前
秋蚓发布了新的文献求助50
3秒前
5秒前
5秒前
芭乐发布了新的文献求助10
5秒前
linyudie发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
英勇映波发布了新的文献求助10
6秒前
luster发布了新的文献求助10
6秒前
felix发布了新的文献求助10
6秒前
科研通AI6应助英俊亦巧采纳,获得20
7秒前
丘比特应助Yel采纳,获得10
7秒前
8秒前
111完成签到,获得积分20
9秒前
12秒前
二分三分完成签到,获得积分10
13秒前
虚幻的水之完成签到,获得积分10
13秒前
菠菜应助小鱼采纳,获得150
14秒前
doc.level完成签到,获得积分10
17秒前
MOON发布了新的文献求助10
17秒前
19秒前
HRB完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
充电宝应助小房子采纳,获得10
23秒前
hostghost发布了新的文献求助100
24秒前
liu123456发布了新的文献求助10
25秒前
搜集达人应助kjwu采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
可爱的函函应助PIKACHU采纳,获得10
26秒前
Zhang发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511604
求助须知:如何正确求助?哪些是违规求助? 4606201
关于积分的说明 14498401
捐赠科研通 4541561
什么是DOI,文献DOI怎么找? 2488537
邀请新用户注册赠送积分活动 1470610
关于科研通互助平台的介绍 1442936