The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances

计算机科学 人工智能 面部识别系统 卷积神经网络 深度学习 端到端原则 判别式 面子(社会学概念) 帧(网络) 三维人脸识别 人脸检测 模式识别(心理学) 计算机视觉 特征(语言学) 电信 语言学 社会科学 哲学 社会学
作者
Hang Du,Hailin Shi,Dan Zeng,Xiao–Ping Zhang,Tao Mei
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (10s): 1-42 被引量:79
标识
DOI:10.1145/3507902
摘要

Face recognition (FR) is one of the most popular and long-standing topics in computer vision. With the recent development of deep learning techniques and large-scale datasets, deep face recognition has made remarkable progress and has been widely used in many real-world applications. Given a natural image or video frame as input, an end-to-end deep face recognition system outputs the face feature for recognition. To achieve this, a typical end-to-end system is built with three key elements: face detection, face alignment, and face representation. Face detection locates faces in the image or frame. Then, the face alignment is proceeded to calibrate the faces to the canonical view and crop them with a normalized pixel size. Finally, in the stage of face representation, the discriminative features are extracted from the aligned face for recognition. Nowadays, all of the three elements are fulfilled by the technique of deep convolutional neural network. In this survey article, we present a comprehensive review about the recent advance of each element of the end-to-end deep face recognition, since the thriving deep learning techniques have greatly improved their capability of them. To start with, we present an overview of the end-to-end deep face recognition. Then, we review the advance of each element, respectively, covering many aspects such as the to-date algorithm designs, evaluation metrics, datasets, performance comparison, existing challenges, and promising directions for future research. Also, we provide a detailed discussion about the effect of each element on its subsequent elements and the holistic system. Through this survey, we wish to bring contributions in two aspects: first, readers can conveniently identify the methods which are quite strong-baseline style in the subcategory for further exploration; second, one can also employ suitable methods for establishing a state-of-the-art end-to-end face recognition system from scratch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Buduan完成签到,获得积分10
1秒前
君君发布了新的文献求助10
1秒前
活泼啤酒完成签到 ,获得积分10
2秒前
www完成签到 ,获得积分10
2秒前
4秒前
魔法披风完成签到,获得积分10
6秒前
haibing发布了新的文献求助10
9秒前
10秒前
jiao完成签到,获得积分10
11秒前
上官若男应助lxr2采纳,获得10
14秒前
乐乐应助君君采纳,获得30
14秒前
15秒前
义气的巨人完成签到,获得积分10
17秒前
77完成签到 ,获得积分10
18秒前
20秒前
lili完成签到 ,获得积分10
21秒前
君君完成签到,获得积分10
21秒前
cyy1226完成签到,获得积分10
23秒前
天天快乐应助cccr02采纳,获得10
24秒前
25秒前
皮皮虾完成签到,获得积分10
25秒前
26秒前
Brian完成签到,获得积分10
27秒前
29秒前
海燕完成签到 ,获得积分20
30秒前
sss发布了新的文献求助10
30秒前
只有辣椒没有油完成签到 ,获得积分10
31秒前
娇气的春天完成签到 ,获得积分10
33秒前
爱听歌的寄云完成签到 ,获得积分10
34秒前
蜜HHH完成签到 ,获得积分10
34秒前
小刘发布了新的文献求助20
36秒前
霍师傅发布了新的文献求助10
36秒前
36秒前
成就绮琴完成签到 ,获得积分10
37秒前
haibing完成签到,获得积分10
38秒前
炙热忆枫发布了新的文献求助10
39秒前
41秒前
42秒前
挞挞不要胖完成签到,获得积分10
45秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522