Approximation Attacks on Strong PUFs

计算机科学
作者
Junye Shi,Yang Lu,Jiliang Zhang
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 2138-2151 被引量:77
标识
DOI:10.1109/tcad.2019.2962115
摘要

Physical unclonable function (PUF) is a promising lightweight hardware security primitive for resource-constrained systems. It can generate a large number of challenge-response pairs (CRPs) for device authentication based on process variations. However, attackers can collect the CRPs to build a machine learning (ML) model with high prediction accuracy for the PUF. Recently, a lot of ML-resistant PUF structures have been proposed, e.g., a multiplexer-based PUF (MPUF) was introduced to resist ML attacks and its two variants (rMPUF and cMPUF) were further proposed to resist reliability-based and cryptanalysis modeling attacks, respectively. In this article, we propose a general framework for ML attacks on strong PUFs, then based on the framework, we present two novel modeling attacks, named logical approximation and global approximation, that use artificial neural network (ANN) to characterize the nonlinear structure of MPUF, rMPUF, cMPUF, and XOR Arbiter PUF. The logical approximation method uses linear functions to approximate logical operations and builds a precise soft model based on the combination of logical gates in the PUF. The global approximation method uses the function sinc with filtering characteristics to fit the mapping relationship between the challenge and response. The experimental results show that the proposed two approximation attacks can successfully model the ( $n$ , $k$ )-MPUF ( $k= 3, 4$ ), ( $n$ , $k$ )-rMPUF ( $k = 2, 3$ ), cMPUF ( $k = 4, 5$ ), and $l$ -XOR Arbiter PUF ( $l= 3, 4, 5$ ) ( $n = 32, 64$ ) with the average accuracies of 96.85%, 95.33%, 94.52%, and 96.26%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
赘婿应助闪闪的夜阑采纳,获得10
1秒前
xiaojiahuo完成签到,获得积分10
1秒前
豆花浮元子完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
田様应助DreamerKing采纳,获得10
3秒前
在水一方应助xx采纳,获得10
3秒前
是容与呀完成签到,获得积分10
4秒前
4秒前
4秒前
英俊的铭应助我我我采纳,获得10
4秒前
rainkz发布了新的文献求助10
5秒前
多情的青曼完成签到,获得积分10
5秒前
mahliya完成签到,获得积分10
5秒前
Jasper应助louiselong采纳,获得10
5秒前
小蘑菇应助凤尾鱼采纳,获得10
5秒前
甜甜映波发布了新的文献求助10
6秒前
kkkkk完成签到,获得积分10
6秒前
6秒前
搜集达人应助你吃饱了吗采纳,获得10
6秒前
6秒前
Caer发布了新的文献求助10
7秒前
Tayzon完成签到,获得积分10
7秒前
元谷雪发布了新的文献求助10
7秒前
干净青发布了新的文献求助10
7秒前
gehao发布了新的文献求助10
7秒前
丘比特应助朝阳任贤齐采纳,获得10
7秒前
友好的半仙完成签到 ,获得积分10
8秒前
8秒前
8秒前
从容的星月完成签到,获得积分10
8秒前
I_won_t完成签到,获得积分10
8秒前
Huang_being完成签到,获得积分20
8秒前
李明完成签到,获得积分10
9秒前
坚定背包发布了新的文献求助10
9秒前
乐乐茶完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809784
求助须知:如何正确求助?哪些是违规求助? 3354374
关于积分的说明 10369891
捐赠科研通 3070592
什么是DOI,文献DOI怎么找? 1686492
邀请新用户注册赠送积分活动 810967
科研通“疑难数据库(出版商)”最低求助积分说明 766448