Lung CT Image Segmentation Using Reinforcement Learning

计算机科学 分割 人工智能 图像分割 计算机视觉 像素 噪音(视频) 图像处理 区域增长 模式识别(心理学) 图像(数学) 尺度空间分割
作者
Parnia Gheysari,Mansoor Fateh,Mohsen Rezvani
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:30 (02): 2150005-2150005 被引量:2
标识
DOI:10.1142/s0218213021500056
摘要

Nowadays, lung disease is a major global problem in the world. Many of the lung diseases are untreatable and reduce the life span of the individual. Initial diagnosis of these diseases can help to completely cure the illness and reduce disease progression. Diagnosis of lung disease is often made based on CT scan images of the lungs. But the diagnosis of lung disease in CT images is a complicated and challenging task. Such a challenge is due to the noise of imaging, the lack of transparency of the image, the intensity of the lighting of some components, and so on. Eliminating these issues makes it easy to diagnose the disease for specialized physicians as well as existing automated diagnostic systems. In this paper, we propose a novel approach for lung CT image segmentation that solves some of these challenges. Also, correct accurate segmentation of these images can help to automatically detect lung diseases. The correct segmentation means a precise determination of the intensity of each area’s brightness, the exact location of the pixels in each area and the preservation of the original image. We employed a reinforcement-based approach for our image segmentation. The proposed method produces the image without noise, and the image components are split with the best accuracy. To evaluate our approach, we manually generated 200 labelled lung CT images. After that, the proposed method, along with two recently published approaches is evaluated against our generated dataset. This comparative evaluation is conducted in two qualitative and quantitative ways. For the qualitative comparison, we employed the consultation of two ultrasound radiologists for evaluating the results of our approach. We also used a similarity measurement to quantitatively evaluate the performance of our proposed segmentation method. In both evaluation approaches, the proposed algorithm provides better performance compared to the other methods. The proposed method provides an accuracy of more than 90% for lung image segmentation, which shows around 5% increase in the accuracy comparing to the state of the art. The high accuracy of this method is due to its fitness to the application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快姿完成签到,获得积分20
刚刚
1秒前
科研通AI5应助zjiang采纳,获得10
1秒前
章鱼完成签到,获得积分10
2秒前
Ava应助念辞采纳,获得10
3秒前
白菜发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
香蕉觅云应助吵吵robot采纳,获得10
7秒前
Syuu关注了科研通微信公众号
7秒前
可爱的函函应助小乌龟采纳,获得10
9秒前
10秒前
直率虔完成签到,获得积分10
12秒前
Orange应助llllllu采纳,获得10
12秒前
壮观以松发布了新的文献求助10
12秒前
13秒前
mmddlj完成签到 ,获得积分10
13秒前
烟花应助zhangfengyan采纳,获得10
14秒前
15秒前
喜悦的飞飞完成签到,获得积分10
15秒前
16秒前
gean发布了新的文献求助10
18秒前
安详的断缘完成签到,获得积分10
19秒前
19秒前
斯文败类应助自然卷卷卷采纳,获得10
20秒前
科研通AI5应助tuluiioo采纳,获得10
21秒前
1234完成签到 ,获得积分10
21秒前
小乌龟发布了新的文献求助10
21秒前
cztsse发布了新的文献求助10
24秒前
科研通AI5应助体贴仙人掌采纳,获得10
24秒前
26秒前
12完成签到,获得积分10
28秒前
simon完成签到,获得积分10
28秒前
simon发布了新的文献求助10
31秒前
31秒前
31秒前
32秒前
34秒前
勤劳的筝发布了新的文献求助10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810579
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374243
捐赠科研通 3071730
什么是DOI,文献DOI怎么找? 1687057
邀请新用户注册赠送积分活动 811396
科研通“疑难数据库(出版商)”最低求助积分说明 766644