主成分分析
解调
奇异值分解
相(物质)
常量(计算机编程)
调制(音乐)
翻译(生物学)
样品(材料)
计算机科学
数学
统计
光学
模式识别(心理学)
算法
人工智能
物理
电信
频道(广播)
生物化学
化学
量子力学
信使核糖核酸
声学
基因
程序设计语言
热力学
作者
J. C. Estrada,Marco Antonio Escobar Acevedo,Javier Vargas
摘要
The use of the Principal Components Analysis (PCA) for recovering the modulating phase, given a sequence of Phase-Shifted Interferograms (PSI), is a very important contribution to the field. However, its verbatim translation from statistics to PSI has limited the view to consider only constant background illuminations. Here, we show that the Singular Value Decomposition (SVD), used in PCA, actually separates the background illumination (constant or not) and the phase modulation terms. We show that the modulating phase can be correctly recovered if the phase-shifts sample full periods uniformly, independently of the spatial distribution of the number of fringes.
科研通智能强力驱动
Strongly Powered by AbleSci AI