Logistic regression was as good as machine learning for predicting major chronic diseases

逻辑回归 接收机工作特性 随机森林 前瞻性队列研究 人工智能 队列 支持向量机 肾脏疾病 人工神经网络 医学 队列研究 机器学习 内科学 统计 计算机科学 数学
作者
Simon Nusinovici,Yih‐Chung Tham,Marco Yu Chak Yan,Daniel Shu Wei Ting,Jialiang Li,Charumathi Sabanayagam,Tien Yin Wong,Ching‐Yu Cheng
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:122: 56-69 被引量:386
标识
DOI:10.1016/j.jclinepi.2020.03.002
摘要

Objective To evaluate the performance of machine learning (ML) algorithms and to compare them with logistic regression for the prediction of risk of cardiovascular diseases (CVDs), chronic kidney disease (CKD), diabetes (DM), and hypertension (HTN) and in a prospective cohort study using simple clinical predictors. Study Design and Setting We conducted analyses in a population-based cohort study in Asian adults (n = 6,762). Five different ML models were considered—single-hidden-layer neural network, support vector machine, random forest, gradient boosting machine, and k-nearest neighbor—and were compared with standard logistic regression. Results The incidences at 6 years of CVD, CKD, DM, and HTN cases were 4.0%, 7.0%, 9.2%, and 34.6%, respectively. Logistic regression reached the highest area under the receiver operating characteristic curve for CKD (0.905 [0.88, 0.93]) and DM (0.768 [0.73, 0.81]) predictions. For CVD and HTN, the best models were neural network (0.753 [0.70, 0.81]) and support vector machine (0.780 [0.747, 0.812]), respectively. However, the differences with logistic regression were small (less than 1%) and nonsignificant. Logistic regression, gradient boosting machine, and neural network were systematically ranked among the best models. Conclusion Logistic regression yields as good performance as ML models to predict the risk of major chronic diseases with low incidence and simple clinical predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
还单身的睿渊完成签到,获得积分10
7秒前
精明尔曼完成签到,获得积分10
8秒前
顾矜应助干净涵梅采纳,获得10
9秒前
zjx完成签到,获得积分10
11秒前
TaoJ应助救救scori采纳,获得10
18秒前
叉叉茶完成签到 ,获得积分10
21秒前
23秒前
26秒前
33秒前
安详的惜梦应助fangzhang采纳,获得10
33秒前
36秒前
hope完成签到,获得积分20
36秒前
6633发布了新的文献求助10
37秒前
栀璃鸳挽发布了新的文献求助10
40秒前
善学以致用应助hope采纳,获得30
41秒前
宋佳完成签到,获得积分10
45秒前
小叙完成签到 ,获得积分10
46秒前
务实映之完成签到,获得积分10
47秒前
要减肥的皮卡丘完成签到 ,获得积分10
47秒前
47秒前
科研通AI2S应助全能发文章采纳,获得10
50秒前
52秒前
spujo完成签到,获得积分10
54秒前
玉灵子发布了新的文献求助10
54秒前
oO完成签到 ,获得积分10
54秒前
Marcus完成签到,获得积分10
54秒前
顺顺完成签到 ,获得积分10
56秒前
852应助Re采纳,获得10
56秒前
彭于晏应助苗条丹南采纳,获得10
57秒前
wyx发布了新的文献求助10
58秒前
玉灵子完成签到,获得积分20
59秒前
1分钟前
1分钟前
1分钟前
紫菜完成签到,获得积分10
1分钟前
赘婿应助zcz采纳,获得10
1分钟前
苗条丹南发布了新的文献求助10
1分钟前
TaoJ应助灿cancan采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098