自愈水凝胶
3D生物打印
生物医学工程
材料科学
生物材料
人的心脏
三维打印
组织工程
纳米技术
3D打印
计算机科学
3d打印
复合材料
工程类
高分子化学
医学
心脏病学
作者
Eman Mirdamadi,Joshua W. Tashman,Daniel J. Shiwarski,Rachelle N. Palchesko,Adam W. Feinberg
标识
DOI:10.1021/acsbiomaterials.0c01133
摘要
Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.
科研通智能强力驱动
Strongly Powered by AbleSci AI