EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

索贝尔算子 卷积神经网络 卷积(计算机科学) 计算机科学 降噪 深度学习 人工智能 图像去噪 噪音(视频) 图像(数学) 图像质量 GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 人工神经网络 边缘检测 图像处理
作者
Tengfei Liang,Yi Jin,Yidong Li,Tao Wang
标识
DOI:10.1109/icsp48669.2020.9320928
摘要

In the past few decades, to reduce the risk of X-ray in computed tomography (CT), low-dose CT image denoising has attracted extensive attention from researchers, which has become an important research issue in the field of medical images. In recent years, with the rapid development of deep learning technology, many algorithms have emerged to apply convolutional neural networks to this task, achieving promising results. However, there are still some problems such as low denoising efficiency, over-smoothed result, etc. In this paper, we propose the Edge enhancement based Densely connected Convolutional Neural Network (EDCNN). In our network, we design an edge enhancement module using the proposed novel trainable Sobel convolution. Based on this module, we construct a model with dense connections to fuse the extracted edge information and realize end-to-end image denoising. Besides, when training the model, we introduce a compound loss that combines MSE loss and multi-scales perceptual loss to solve the over-smoothed problem and attain a marked improvement in image quality after denoising. Compared with the existing low-dose CT image denoising algorithms, our proposed model has a better performance in preserving details and suppressing noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助苏苏采纳,获得10
1秒前
超靓诺言应助jwb711采纳,获得10
1秒前
1秒前
文静的新筠完成签到,获得积分10
2秒前
2秒前
Bazinga发布了新的文献求助10
3秒前
五月发布了新的文献求助10
5秒前
5秒前
爆米花应助chengzi采纳,获得10
6秒前
6秒前
00完成签到 ,获得积分10
6秒前
7秒前
思恩Shen发布了新的文献求助10
7秒前
Bazinga完成签到,获得积分10
8秒前
冬去春来发布了新的文献求助10
10秒前
mingge发布了新的文献求助10
12秒前
Liu发布了新的文献求助10
12秒前
无花果应助大鸭梨采纳,获得10
13秒前
我是老大应助Kannan采纳,获得10
16秒前
16秒前
ZetianYang完成签到,获得积分10
16秒前
17秒前
思源应助Hexagram采纳,获得10
17秒前
乐乐应助早安采纳,获得10
17秒前
18秒前
辛苦打工人完成签到,获得积分10
19秒前
SnLXn发布了新的文献求助60
19秒前
苏苏发布了新的文献求助10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
eric888应助科研通管家采纳,获得10
22秒前
anneke_发布了新的文献求助10
22秒前
eric888应助科研通管家采纳,获得10
22秒前
eric888应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得30
22秒前
桐桐应助科研通管家采纳,获得30
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927368
求助须知:如何正确求助?哪些是违规求助? 3472020
关于积分的说明 10971108
捐赠科研通 3201804
什么是DOI,文献DOI怎么找? 1769024
邀请新用户注册赠送积分活动 857854
科研通“疑难数据库(出版商)”最低求助积分说明 796188