AUTOMATED GRADING OF PROSTATE CANCER USING ARCHITECTURAL AND TEXTURAL IMAGE FEATURES

分级(工程) 前列腺 前列腺癌 基质 组织学 活检 病理 前列腺切除术 计算机科学 人工智能 医学 癌症 生物 免疫组织化学 生态学 内科学
作者
Scott Doyle,M. Hwang,Kinsuk Shah,Anant Madabhushi,Michaël Feldman,John Tomaszeweski
标识
DOI:10.1109/isbi.2007.357094
摘要

The current method of grading prostate cancer on histology uses the Gleason system, which describes five increasingly malignant stages of cancer according to qualitative analysis of tissue architecture. The Gleason grading system has been shown to suffer from inter- and intra-observer variability. In this paper we present a new method for automated and quantitative grading of prostate biopsy specimens. A total of 102 graph-based, morphological, and textural features are extracted from each tissue patch in order to quantify the arrangement of nuclei and glandular structures within digitized images of histological prostate tissue specimens. A support vector machine (SVM) is used to classify the digitized histology slides into one of four different tissue classes: benign epithelium, benign stroma, Gleason grade 3 adenocarcinoma, and Gleason grade 4 adenocarcinoma. The SVM classifier was able to distinguish between all four types of tissue patterns, achieving an accuracy of 92.8% when distinguishing between Gleason grade 3 and stroma, 92.4% between epithelium and stroma, and 76.9% between Gleason grades 3 and 4. Both textural and graph-based features were found to be important in discriminating between different tissue classes. This work suggests that the current Gleason grading scheme can be improved by utilizing quantitative image analysis to aid pathologists in producing an accurate and reproducible diagnosis
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希希完成签到,获得积分10
刚刚
智智发布了新的文献求助10
1秒前
我是老大应助自觉紫安采纳,获得10
1秒前
Hey发布了新的文献求助10
2秒前
chen发布了新的文献求助10
2秒前
文艺的匪完成签到,获得积分10
2秒前
伶俐书雁发布了新的文献求助10
2秒前
bkagyin应助bingbing采纳,获得10
2秒前
nana完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
6秒前
gao完成签到,获得积分10
6秒前
heli发布了新的文献求助10
7秒前
侃侃发布了新的文献求助30
7秒前
无限的语芹完成签到,获得积分10
8秒前
追风e族发布了新的文献求助10
8秒前
bkagyin应助一朵采纳,获得10
8秒前
rid4iuclous2完成签到,获得积分10
8秒前
8秒前
大个应助学术羊采纳,获得10
11秒前
伶俐书雁完成签到,获得积分10
12秒前
13秒前
自觉紫安发布了新的文献求助10
15秒前
sansan完成签到 ,获得积分10
15秒前
15秒前
南北完成签到,获得积分10
16秒前
16秒前
16秒前
都可以完成签到,获得积分10
17秒前
FeversKim发布了新的文献求助10
17秒前
19秒前
追风e族完成签到,获得积分10
19秒前
大个应助hjp采纳,获得10
19秒前
侃侃完成签到,获得积分10
20秒前
林夕完成签到,获得积分10
21秒前
一朵发布了新的文献求助10
21秒前
学术羊发布了新的文献求助10
22秒前
咕咕发布了新的文献求助10
25秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825282
求助须知:如何正确求助?哪些是违规求助? 3367593
关于积分的说明 10446446
捐赠科研通 3086915
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816717
科研通“疑难数据库(出版商)”最低求助积分说明 769937