Energy Out-of-distribution Based Fault Detection of Multivariate Time-series Data

离群值 Softmax函数 异常检测 能量(信号处理) 计算机科学 人工神经网络 航程(航空) 人工智能 模式识别(心理学) 断层(地质) 自编码 多元统计 功能(生物学) 数据挖掘 机器学习 统计 数学 工程类 地震学 地质学 进化生物学 生物 航空航天工程
作者
Umang Goswami,Jyoti Rani,Deepak Kumar,Hariprasad Kodamana,Manojkumar Ramteke
出处
期刊:Computer-aided chemical engineering 卷期号:: 1885-1890 被引量:4
标识
DOI:10.1016/b978-0-443-15274-0.50299-7
摘要

A major challenge faced by the chemical process industry is carrying out operations safely and safely. The proposed work entails a fault detection approach for a multivariate time series dataset by utilizing the energy scores instead of the traditional approach. This work proposes a loss function which utilizes the concept of in-distribution and out of the distribution of data. Energy scores are more theoretically aligned with the probability density of the inputs and can be used as a scoring function. For a pre-trained neural network, energy can be utilized as a scoring function and can also be used as a trainable cost function. The concept of out-of-distribution is similar to that of any outlier identification method. Similarly, for energy out of distribution, an energy value which falls below a certain threshold can be considered an outlier and is addressed as out-of-distribution. The values within the range are in-distribution. Higher energy values imply a lower likelihood of occurrence and vice versa. The proposed approach is compared with different deep learning approaches like Auto-encoders (AEs), LSTMs and LSTM-AEs that are traditionally used for anomaly detection and utilize the softmax scores. The Proposed methodology is also compared with some state-of-the-art fault detection methods, such as the PCA and DPCA and returns encouraging results. Energy based out of distribution is coupled with various deep learning methods to identify faulty and normal points. When teamed with the Auto-encoder network, energy-based scoring proved to be of significant dominance compared to other methods. The study was validated for the benchmark Tennessee Eastman data for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
txg完成签到,获得积分20
3秒前
无限的谷丝完成签到,获得积分10
6秒前
Narcisa发布了新的文献求助10
7秒前
8秒前
10秒前
阳光梦易完成签到 ,获得积分10
11秒前
意绵雅风完成签到,获得积分10
12秒前
望TIAN完成签到,获得积分10
13秒前
Xzz发布了新的文献求助30
15秒前
哈哈发布了新的文献求助10
15秒前
Amo应助跳跳糖采纳,获得10
15秒前
joleisalau发布了新的文献求助10
16秒前
17秒前
故意的怜晴完成签到 ,获得积分10
17秒前
19秒前
23秒前
zzz发布了新的文献求助10
25秒前
25秒前
27秒前
29秒前
30秒前
科研通AI2S应助宇老师采纳,获得10
30秒前
ttsgs123发布了新的文献求助10
32秒前
单纯忆灵应助KinKrit采纳,获得10
32秒前
爆米花应助KinKrit采纳,获得10
32秒前
天天快乐应助KinKrit采纳,获得10
32秒前
水手_发布了新的文献求助10
32秒前
Jasper应助KinKrit采纳,获得10
32秒前
善学以致用应助KinKrit采纳,获得10
32秒前
李爱国应助KinKrit采纳,获得10
32秒前
orixero应助KinKrit采纳,获得10
32秒前
小马甲应助KinKrit采纳,获得10
33秒前
33秒前
林狗发布了新的文献求助10
34秒前
郭宇发布了新的文献求助10
35秒前
37秒前
水手_完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976