Distributionally robust optimization for collaborative emergency response network design

模棱两可 解算器 计算机科学 弹性(材料科学) 应急管理 数学优化 网络规划与设计 运筹学 工程类 数学 经济 计算机网络 经济增长 热力学 物理 程序设计语言
作者
Yuchen Li,Yang Liu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:176: 103221-103221 被引量:3
标识
DOI:10.1016/j.tre.2023.103221
摘要

The post-disaster emergency response capacity of a single country is limited, and a collaborative approach that pools emergency resources can improve disaster resilience. In this paper, we study a multi-country collaborative emergency response network design problem with uncertain demand and transportation time. Considering the benefits of inter-regional cooperation in sharing emergency facilities and resources, we construct a collaborative emergency response network (CERN) design framework. The cost of CERN is allocated among the partner countries according to their expect standalone response cost and the level of economic development. In practice, the distribution information of random parameters is not perfectly known, so we propose a distributionally robust optimization (DRO) model to design the CERN. A scenario-wise ambiguity set is constructed to characterize the uncertain parameters based on disaster-level-related events. To solve the proposed DRO model, we propose a decomposition-based algorithm with a valid inequality. In the numerical study, we first verify the advantage of the CERN design approach. The proposed scenario-wise DRO method is subsequently compared with alternative modeling approaches to assess its out-of-sample performance. The findings confirm the efficacy of the constructed ambiguity set in capturing the uncertainty stemming from varying magnitudes of catastrophic events. The computational study demonstrates that the proposed algorithm exhibits superior computational efficiency compared to the commercial solver CPLEX for large-scale problems. Additionally, we conduct sensitivity analyses on various parameter configurations and provide managerial insights for the CERN design problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
单薄落雁完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
泰勒完成签到,获得积分10
3秒前
李小小完成签到,获得积分10
3秒前
4秒前
PhD_Lee73发布了新的文献求助30
4秒前
5秒前
5秒前
一白完成签到 ,获得积分10
5秒前
泰勒发布了新的文献求助10
5秒前
5秒前
Brak发布了新的文献求助10
6秒前
热心柚子发布了新的文献求助10
6秒前
筷子发布了新的文献求助10
6秒前
顾矜应助Zmy采纳,获得30
6秒前
6秒前
ZY发布了新的文献求助10
6秒前
单薄落雁发布了新的文献求助10
6秒前
yyz发布了新的文献求助10
6秒前
7秒前
LZJ完成签到,获得积分10
7秒前
景天寿发布了新的文献求助10
7秒前
7秒前
小马甲应助wyj采纳,获得10
7秒前
依依完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
断棍豪斯完成签到,获得积分10
10秒前
神勇的萝发布了新的文献求助10
11秒前
天涯是我发布了新的文献求助10
11秒前
羅马完成签到 ,获得积分10
11秒前
carbonhan发布了新的文献求助200
12秒前
赵雪丞完成签到,获得积分10
13秒前
13秒前
断棍豪斯发布了新的文献求助10
13秒前
小章鱼发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775