Random noise attenuation of 3D multicomponent seismic data using a fast adaptive prediction filter

衰减 随机噪声 噪音(视频) 滤波器(信号处理) 地震噪声 地质学 自适应滤波器 计算机科学 地震学 声学 算法 人工智能 物理 计算机视觉 光学 图像(数学)
作者
Zhiyong Wang,Guochang Liu,Chao Li,Lanting Shi,Zixu Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (3): V263-V280 被引量:6
标识
DOI:10.1190/geo2023-0195.1
摘要

Random noise in seismic records affects the accuracy of effective signal identification, making it difficult for subsequent seismic data processing, imaging, and interpretation. Therefore, random noise attenuation has always been an important step in seismic data processing, especially for 3D data. In recent years, multicomponent exploration has been developed rapidly. However, the common method for processing multicomponent data is to process each component separately resulting in the correlation between multicomponent data being neglected. For 3D multicomponent data, we develop a multicomponent adaptive prediction filter (MAPF) based on noncausal regularized nonstationary autoregressive models to implement random noise attenuation in the t- x- y domain. The MAPF for multicomponent signals can be used to identify the potential correlations and differences between each pair of components, providing not only a robust analysis of the individual components but also effective information about the consistency and differences between each component with more information and constraints compared with traditional 1C prediction. Moreover, it can obtain smooth nonstationary prediction coefficients by solving the least-squares problem with shaping regularization. The example results demonstrate that the MAPF method is superior to the traditional adaptive prediction filtering method. Furthermore, because the multicomponent method requires more coefficients and takes a longer time to predict than the 1C method, we further develop a fast MAPF (FMAPF) combining the data pooling and coefficient reconstruction strategies. The example results demonstrate that the FMAPF method is effective at denoising and greatly improves computational efficiency. The method comes with a slight decrease in computational accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dong发布了新的文献求助10
1秒前
1秒前
科研通AI5应助Pepsi采纳,获得10
1秒前
孜然西瓜发布了新的文献求助10
3秒前
机灵乐驹完成签到,获得积分10
3秒前
glitter完成签到,获得积分20
3秒前
why发布了新的文献求助10
4秒前
郝晨晰发布了新的文献求助10
4秒前
zmmm发布了新的文献求助10
4秒前
4秒前
pengchen完成签到 ,获得积分10
5秒前
5秒前
7秒前
打打应助认真初之采纳,获得10
7秒前
莫西莫西完成签到,获得积分10
7秒前
共享精神应助Anastasia采纳,获得10
7秒前
7秒前
8秒前
猪猪侠完成签到,获得积分10
8秒前
mingxi发布了新的文献求助10
8秒前
8秒前
酷波er应助dong采纳,获得10
9秒前
9秒前
搜集达人应助Dlan采纳,获得10
9秒前
10秒前
zmmm完成签到,获得积分10
10秒前
自由山槐发布了新的文献求助100
11秒前
cc完成签到 ,获得积分10
11秒前
贺贺发布了新的文献求助10
12秒前
12秒前
活泼菠萝完成签到,获得积分10
12秒前
Chang发布了新的文献求助10
12秒前
mingxi完成签到,获得积分10
15秒前
15秒前
15秒前
dddddd发布了新的文献求助10
16秒前
等待冬亦应助无尘采纳,获得20
17秒前
17秒前
FashionBoy应助里奥采纳,获得10
17秒前
夕夕成玦完成签到,获得积分10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274