Accelerating FEM-Based Corrosion Predictions Using Machine Learning

腐蚀 有限元法 工作(物理) 计算机科学 材料科学 机械工程 冶金 结构工程 工程类
作者
David Montes de Oca Zapiain,Demitri Maestas,Matthew Roop,Philip Noel,Michael Melia,Ryan Katona
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:171 (1): 011504-011504 被引量:10
标识
DOI:10.1149/1945-7111/ad1e3c
摘要

Atmospheric corrosion of metallic parts is a widespread materials degradation phenomena that is challenging to predict given its dependence on many factors (e.g. environmental, physiochemical, and part geometry). For materials with long expected service lives, accurately predicting the degree to which corrosion will degrade part performance is especially difficult due to the stochastic nature of corrosion damage spread across years or decades of service. The Finite Element Method (FEM) is a computational technique capable of providing accurate estimates of corrosion rate by numerically solving complex differential Eqs. characterizing this phenomena. Nevertheless, given the iterative nature of FEM and the computational expense required to solve these complex equations, FEM is ill-equipped for an efficient exploration of the design space to identify factors that accelerate or deter corrosion, despite its accuracy. In this work, a machine learning based surrogate model capable of providing accurate predictions of corrosion with significant computational savings is introduced. Specifically, this work leverages AdaBoosted Decision trees to provide an accurate estimate of corrosion current per width given different values of temperature, water layer thickness, molarity of the solution, and the length of the cathode for a galvanic couple of aluminum and stainless steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mengyanwang完成签到,获得积分10
刚刚
东方天奇完成签到 ,获得积分10
3秒前
6秒前
传奇3应助风趣的思菱采纳,获得10
6秒前
小豆芽完成签到,获得积分10
6秒前
7秒前
meowching关注了科研通微信公众号
7秒前
Jasper应助竞鹤采纳,获得10
7秒前
Z170发布了新的文献求助10
8秒前
所所应助王平宇采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
yeao完成签到,获得积分10
10秒前
完美世界应助111采纳,获得10
10秒前
Canma完成签到 ,获得积分10
10秒前
我想毕业应助日常卖命采纳,获得10
11秒前
11秒前
11秒前
1111发布了新的文献求助10
11秒前
Akim应助falcon采纳,获得10
12秒前
12秒前
LCC发布了新的文献求助10
12秒前
Hello应助橙子采纳,获得30
13秒前
16秒前
我是老大应助D&L采纳,获得10
18秒前
19秒前
20秒前
20秒前
胖达雷雷完成签到 ,获得积分10
21秒前
21秒前
21秒前
沏碗麻花完成签到,获得积分10
21秒前
meowching发布了新的文献求助10
22秒前
22秒前
23秒前
数学真的好难完成签到,获得积分10
23秒前
领导范儿应助子凯采纳,获得10
24秒前
阿超完成签到,获得积分10
25秒前
赘婿应助明亮的颖采纳,获得10
25秒前
LCC完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486607
求助须知:如何正确求助?哪些是违规求助? 4586106
关于积分的说明 14407835
捐赠科研通 4516543
什么是DOI,文献DOI怎么找? 2474876
邀请新用户注册赠送积分活动 1460776
关于科研通互助平台的介绍 1433865