A novel graph-attention based multimodal fusion network for joint classification of hyperspectral image and LiDAR data

高光谱成像 计算机科学 激光雷达 人工智能 接头(建筑物) 传感器融合 图形 模式识别(心理学) 计算机视觉 机器学习 遥感 地质学 理论计算机科学 建筑工程 工程类
作者
Jianghui Cai,M. Zhang,Haifeng Yang,Yanting He,Yuqing Yang,Chenhui Shi,Xujun Zhao,Yaling Xun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123587-123587 被引量:12
标识
DOI:10.1016/j.eswa.2024.123587
摘要

The joint classification of hyperspectral image (HSI) and Light Detection and Ranging (LiDAR) data can provide complementary information for each other, which has become a prominent topic in the field of remote sensing. Nevertheless, the common CNN-based fusion techniques still suffer from the following drawbacks. (1) Most of these models omit the correlation and complementarity between different data sources and always fail to model the long-distance dependencies of spectral information well. (2) Simply splicing the multi-source feature embeddings overlooks the deep semantic relationships among them. To tackle these issues, we propose a novel graph-attention based multimodal fusion network (GAMF). Specifically, it employs three major components, including an HSI-LiDAR feature extractor, a graph-attention based fusion module and a classification module. In the feature extraction module, we consider the correlation and complementarity between multi-sensor data by parameter sharing and employ Gaussian tokenization for feature transformation additionally. To address the problem of long-distance dependencies, the deep fusion module utilizes modality-specific tokens to construct an undirected weighted graph, which is essentially a heterogeneous graph. And the deep semantic relationships between them are exploited utilizing a graph-attention based fusion framework. At the end, two fully connected layers classify the fused embeddings. Experiment evaluations on several benchmark HSI-LiDAR datasets (Trento, University of Houston 2013 and MUUFL) show that GAMF achieves more accurate prediction results than some state-of-the-art baselines. The code is available at https://github.com/tyust-dayu/GAMF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zjq完成签到,获得积分10
2秒前
文迪厄尔发布了新的文献求助30
2秒前
qsyslh完成签到,获得积分10
3秒前
4秒前
5秒前
Nansen完成签到 ,获得积分10
5秒前
90无脸男发布了新的文献求助30
6秒前
情怀应助高大毛衣采纳,获得10
6秒前
Owen应助洋芋锅巴采纳,获得10
7秒前
cosy发布了新的文献求助10
8秒前
8秒前
斯文败类应助qsyslh采纳,获得10
8秒前
9秒前
agent完成签到 ,获得积分10
11秒前
虚幻沛文完成签到 ,获得积分10
12秒前
饿得咕咕地完成签到,获得积分10
13秒前
小徐完成签到,获得积分10
13秒前
王梦涵完成签到,获得积分10
15秒前
勤恳风华完成签到,获得积分10
15秒前
15秒前
困困发布了新的文献求助10
15秒前
15秒前
高大毛衣完成签到,获得积分20
16秒前
欣喜代秋发布了新的文献求助10
16秒前
苏苏完成签到 ,获得积分10
16秒前
文迪厄尔发布了新的文献求助30
17秒前
小耗子完成签到,获得积分10
17秒前
科研通AI5应助喵了个咪采纳,获得10
17秒前
17秒前
格桑梅朵应助阿言采纳,获得200
18秒前
美满的冬卉完成签到 ,获得积分10
18秒前
20秒前
畅快的煜祺完成签到 ,获得积分10
20秒前
lli完成签到,获得积分10
20秒前
21秒前
洋芋锅巴发布了新的文献求助10
21秒前
浮生若梦完成签到 ,获得积分10
22秒前
机灵的雁蓉完成签到,获得积分10
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Les dinosaures (Carnosaures, Allosauridés, Sauropodes, Cétosauridés) du Jurassique Moyen de Cerro Cóndor (Chubut, Argentina). Annales de Paléontologie (Vert.-Invert.) 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825290
求助须知:如何正确求助?哪些是违规求助? 3367618
关于积分的说明 10446647
捐赠科研通 3086928
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816756
科研通“疑难数据库(出版商)”最低求助积分说明 769937