FADngs: Federated Learning for Anomaly Detection

计算机科学 异常检测 判别式 异常(物理) 集成学习 数据挖掘 人工智能 光学(聚焦) 机器学习 任务(项目管理) 编码(集合论) 工程类 物理 光学 凝聚态物理 系统工程 集合(抽象数据类型) 程序设计语言
作者
Boyu Dong,Dong Chen,Yu Wu,Siliang Tang,Yueting Zhuang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2578-2592 被引量:5
标识
DOI:10.1109/tnnls.2024.3350660
摘要

With the increasing demand for data privacy, federated learning (FL) has gained popularity for various applications. Most existing FL works focus on the classification task, overlooking those scenarios where anomaly detection may also require privacy-preserving. Traditional anomaly detection algorithms cannot be directly applied to the FL setting due to false and missing detection issues. Moreover, with common aggregation methods used in FL (e.g., averaging model parameters), the global model cannot keep the capacities of local models in discriminating anomalies deviating from local distributions, which further degrades the performance. For the aforementioned challenges, we propose Federated Anomaly Detection with Noisy Global Density Estimation, and Self-supervised Ensemble Distillation (FADngs). Specifically, FADngs aligns the knowledge of data distributions from each client by sharing processed density functions. Besides, FADngs trains local models in an improved contrastive learning way that learns more discriminative representations specific for anomaly detection based on the shared density functions. Furthermore, FADngs aggregates capacities by ensemble distillation, which distills the knowledge learned from different distributions to the global model. Our experiments demonstrate that the proposed method significantly outperforms state-of-the-art federated anomaly detection methods. We also empirically show that the shared density function is privacy-preserving. The code for the proposed method is provided for research purposes https://github.com/kanade00/Federated_Anomaly_detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duyu完成签到 ,获得积分10
刚刚
刚刚
肖福艳发布了新的文献求助10
2秒前
聪慧的芳完成签到 ,获得积分10
2秒前
4秒前
无花果应助不会骑车的猪采纳,获得10
4秒前
4秒前
平常完成签到,获得积分10
4秒前
aaaa阿言完成签到,获得积分10
6秒前
不会画画发布了新的文献求助10
6秒前
阳光的冥幽完成签到 ,获得积分10
6秒前
jmchen完成签到,获得积分10
6秒前
Lds发布了新的文献求助10
7秒前
rgu发布了新的文献求助10
8秒前
英俊的铭应助YY采纳,获得10
8秒前
9秒前
qqqq082完成签到,获得积分10
10秒前
酷波er应助蒙豆儿采纳,获得10
10秒前
FashionBoy应助莉莉采纳,获得10
11秒前
时尚丹寒完成签到 ,获得积分10
12秒前
12秒前
科目三应助平常采纳,获得30
13秒前
李爱国应助pp采纳,获得10
13秒前
王小新发布了新的文献求助10
14秒前
李健的小迷弟应助Lds采纳,获得10
14秒前
14秒前
务实的西牛完成签到,获得积分10
16秒前
安详念蕾发布了新的文献求助10
19秒前
18166992885完成签到 ,获得积分10
20秒前
牛油果酱完成签到 ,获得积分10
20秒前
淮南完成签到,获得积分20
22秒前
24秒前
24秒前
hyxu678完成签到,获得积分10
24秒前
淮南发布了新的文献求助10
24秒前
阿猩a完成签到 ,获得积分10
24秒前
24秒前
伊布完成签到,获得积分10
25秒前
orixero应助qhk采纳,获得10
25秒前
地精术士完成签到,获得积分10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225