Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization

数学优化 计算机科学 进化算法 模糊逻辑 人口 趋同(经济学) 帕累托原理 选择(遗传算法) 多目标优化 偏爱 集合(抽象数据类型) 解决方案集 人工智能 数学 统计 经济 人口学 程序设计语言 社会学 经济增长
作者
Ying Xie,Junhua Li,Y Li,Wenhao Zhu,Chao‐Qing Dai
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:85: 101480-101480 被引量:3
标识
DOI:10.1016/j.swevo.2024.101480
摘要

Multimodal multi-objective optimization problems (MMOPs) are multi-objective optimization problems (MOPs) involving multiple equivalent global or local Pareto optimal solution sets (PSs). For decision-makers, not only the global optimal solution sets need to be found, but also the value of local optimal solution sets cannot be ignored. However, most multimodal multi-objective evolutionary algorithms (MMOEAs) tend to select solutions with better convergence, and it is difficult to obtain the global PSs and local PSs at the same time. Therefore, we propose a fuzzy preference indicator-based two-stage evolutionary algorithm (FPITSEA) in this paper. To evaluate more comprehensively the potential of each solution in the population for locating the global and local PS during the evolutionary process, a fuzzy preference indicator is designed in FPITSEA. The fuzzy preference indicator is used to guide the evolution of the population in the first stage to find the global and local Pareto optimal regions. Subsequently, an independent evolution strategy is implemented in the second stage to distinguish different PSs as accurately as possible while also ensuring the convergence quality of the solution set. In addition, an improved distance-based subset selection method is proposed, aiming to simultaneously improve the distribution of the solution set in the decision space and objective space. Experimental results on several test sets of MMOPs show the advantages of FPITSEA over several state-of-the-art MMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao应助黄黄采纳,获得10
3秒前
22发布了新的文献求助10
4秒前
献文发布了新的文献求助10
4秒前
研友_VZG7GZ应助Jian采纳,获得30
6秒前
hesven完成签到 ,获得积分10
8秒前
hkhhh完成签到,获得积分20
10秒前
kannakaco完成签到,获得积分10
10秒前
11秒前
12秒前
木冉完成签到,获得积分10
12秒前
12秒前
evyhui发布了新的文献求助10
17秒前
17秒前
18秒前
J157完成签到,获得积分10
18秒前
yhb完成签到,获得积分10
20秒前
22秒前
J157发布了新的文献求助10
22秒前
heartbeat完成签到,获得积分10
25秒前
深情安青应助奋斗的忆南采纳,获得10
25秒前
25秒前
25秒前
太叔丹翠发布了新的文献求助10
26秒前
时间地点条件完成签到,获得积分10
28秒前
evyhui完成签到,获得积分10
28秒前
29秒前
zwy109完成签到 ,获得积分10
29秒前
yhb发布了新的文献求助10
29秒前
zz发布了新的文献求助10
31秒前
31秒前
完美世界应助hkhhh采纳,获得30
31秒前
yeerrr完成签到,获得积分10
32秒前
莹cy完成签到 ,获得积分10
33秒前
33秒前
34秒前
醉熏的红酒完成签到,获得积分10
34秒前
yuchangkun发布了新的文献求助10
35秒前
Faustina发布了新的文献求助10
37秒前
37秒前
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810536
求助须知:如何正确求助?哪些是违规求助? 3355025
关于积分的说明 10373819
捐赠科研通 3071528
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811366
科研通“疑难数据库(出版商)”最低求助积分说明 766619