Automated Anemia Classification and Hemoglobin Level Prediction using Deep CNN and GLCM Features of Palpebral Conjunctiva Images

人工智能 睑裂 计算机科学 结膜 计算机视觉 模式识别(心理学) 医学 眼科 病理
作者
Chandrasekhar Bhusham,Ajay Kumar Reddy Poreddy,Thunakala Bala Krishna,Priyanka Kokil
标识
DOI:10.1109/cict59886.2023.10455477
摘要

Anemia is a common medical condition affecting millions worldwide, particularly in developing countries. Early detection of anemia is crucial for prompt treatment and prevention of its potential complications. In recent years, deep learning (DL) has shown great potential in various medical applications, including medical image classification, anomaly detection, and segmentation. This study proposes a transfer learning-based approach using a pre-trained DL model to detect anemia from palpebral conjunctiva images. The proposed method utilizes a pre-trained DenseNet-201 model and fine-tuned it on a target dataset of palpebral conjunctiva images to detect anemia. Deep features of palpebral conjunctiva images computed from the fine-tuned DenseNet-201 are fed to MLP to identify anemia. The performance of the proposed method is evaluated on a publicly available anemia dataset, and the results show that the proposed method achieves an accuracy of 93.7 % in detecting anemia from palpebral conjunctiva images. In addition to anemia classification, we computed the hemoglobin level of palpebral conjunctiva images based on the gray-level co-occurrence matrix (GLCM) statistical properties. The statistical properties of GLCM are given to support vector and polynomial regressors, and the mean value of the predicted scores of both regressors is used to estimate the hemoglobin level. Experimental results show that the proposed model achieves an average root mean square error of 0.72 for conjunctiva images.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.c发布了新的文献求助10
刚刚
xiaosi完成签到 ,获得积分10
刚刚
叮叮当当发布了新的文献求助200
1秒前
科研通AI6.1应助Chengcheng采纳,获得10
1秒前
TKTK发布了新的文献求助30
1秒前
花泽秀完成签到,获得积分10
6秒前
8秒前
TKTK完成签到,获得积分10
10秒前
11秒前
几酌发布了新的文献求助10
12秒前
12秒前
科研通AI6.1应助TKTK采纳,获得10
15秒前
16秒前
猫猫祟完成签到 ,获得积分10
17秒前
终成院士完成签到 ,获得积分10
17秒前
Owen应助等待的慕梅采纳,获得10
18秒前
美琦发布了新的文献求助10
20秒前
几酌完成签到,获得积分10
20秒前
神驹大将发布了新的文献求助10
21秒前
21秒前
22秒前
好好学习完成签到,获得积分0
24秒前
懦弱的难敌完成签到 ,获得积分10
24秒前
25秒前
海潮发布了新的文献求助10
27秒前
30秒前
kid发布了新的文献求助10
31秒前
32秒前
杨晰完成签到 ,获得积分10
32秒前
活力怜雪完成签到 ,获得积分10
33秒前
海潮完成签到,获得积分10
35秒前
alex发布了新的文献求助10
38秒前
浮光跃金完成签到 ,获得积分10
41秒前
42秒前
43秒前
王海强发布了新的文献求助10
44秒前
alex完成签到,获得积分10
46秒前
玛卡发布了新的文献求助10
46秒前
蓝天应助科研通管家采纳,获得10
46秒前
CodeCraft应助科研通管家采纳,获得10
46秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998