亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Anemia Classification and Hemoglobin Level Prediction using Deep CNN and GLCM Features of Palpebral Conjunctiva Images

人工智能 睑裂 计算机科学 结膜 计算机视觉 模式识别(心理学) 医学 眼科 病理
作者
Chandrasekhar Bhusham,Ajay Kumar Reddy Poreddy,Thunakala Bala Krishna,Priyanka Kokil
标识
DOI:10.1109/cict59886.2023.10455477
摘要

Anemia is a common medical condition affecting millions worldwide, particularly in developing countries. Early detection of anemia is crucial for prompt treatment and prevention of its potential complications. In recent years, deep learning (DL) has shown great potential in various medical applications, including medical image classification, anomaly detection, and segmentation. This study proposes a transfer learning-based approach using a pre-trained DL model to detect anemia from palpebral conjunctiva images. The proposed method utilizes a pre-trained DenseNet-201 model and fine-tuned it on a target dataset of palpebral conjunctiva images to detect anemia. Deep features of palpebral conjunctiva images computed from the fine-tuned DenseNet-201 are fed to MLP to identify anemia. The performance of the proposed method is evaluated on a publicly available anemia dataset, and the results show that the proposed method achieves an accuracy of 93.7 % in detecting anemia from palpebral conjunctiva images. In addition to anemia classification, we computed the hemoglobin level of palpebral conjunctiva images based on the gray-level co-occurrence matrix (GLCM) statistical properties. The statistical properties of GLCM are given to support vector and polynomial regressors, and the mean value of the predicted scores of both regressors is used to estimate the hemoglobin level. Experimental results show that the proposed model achieves an average root mean square error of 0.72 for conjunctiva images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助HHH采纳,获得10
刚刚
捏捏发布了新的文献求助10
1秒前
4秒前
郭1994完成签到 ,获得积分10
9秒前
16秒前
18秒前
开朗的曼凡完成签到,获得积分20
19秒前
esbd完成签到,获得积分10
19秒前
沈景易完成签到,获得积分10
20秒前
YCCC完成签到,获得积分10
21秒前
HHH发布了新的文献求助10
21秒前
Akim应助狗头采纳,获得10
22秒前
科研通AI5应助狗头采纳,获得10
22秒前
SL完成签到,获得积分10
23秒前
23秒前
HHH完成签到,获得积分10
26秒前
Tia完成签到 ,获得积分10
28秒前
无昵称完成签到 ,获得积分10
33秒前
miss完成签到,获得积分10
34秒前
莉莉斯完成签到 ,获得积分10
34秒前
跳跃的曼寒完成签到,获得积分10
37秒前
lijunlhc完成签到,获得积分10
51秒前
安详向薇完成签到,获得积分10
53秒前
56秒前
沈景易发布了新的文献求助10
57秒前
莫妮卡卡发布了新的文献求助10
59秒前
zzz完成签到 ,获得积分10
1分钟前
清爽夜雪完成签到,获得积分10
1分钟前
着急的若魔完成签到,获得积分10
1分钟前
1分钟前
莫妮卡卡发布了新的文献求助10
1分钟前
香蕉觅云应助怡然银耳汤采纳,获得10
1分钟前
务实书包完成签到,获得积分10
1分钟前
忧郁的寻冬完成签到,获得积分10
1分钟前
晓书完成签到 ,获得积分10
1分钟前
1分钟前
莫妮卡卡发布了新的文献求助10
1分钟前
1分钟前
feiCheung完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244053
捐赠科研通 3045345
什么是DOI,文献DOI怎么找? 1671626
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483