Comparative Analysis of Shear Strength Prediction Models for Reinforced Concrete Slab–Column Connections

厚板 结构工程 栏(排版) 剪切(地质) 抗剪强度(土壤) 钢筋混凝土 岩土工程 地质学 材料科学 工程类 复合材料 连接(主束) 土壤科学 土壤水分
作者
Sarmed Wahab,Nasim Shakouri Mahmoudabadi,Sarmad Waqas,Nouman Herl,Muhammad Farjad Iqbal,Khurshid Alam,Afaq Ahmad
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2024 (1) 被引量:10
标识
DOI:10.1155/2024/1784088
摘要

This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, integrating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318‐19 (ACI 318‐19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists of seven key parameters including slab depth ( d s ), column dimension ( c s ), shear span ratio ( a v / d ), yield strength of longitudinal steel ( f y ), longitudinal reinforcement ratio ( ρ l ), ultimate load‐carrying capacity ( V u ), and concrete compressive strength ( f c ). Compared with the design codes and other machine learning models, the particle swarm optimization‐based feedforward neural network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy with R 2 value of 99.37% and least MSE and MAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive capabilities of EC2 over ACI 318‐19 for punching shear values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxmt123456789完成签到,获得积分10
刚刚
玉梅发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
可爱的函函应助星星采纳,获得10
1秒前
霜双双发布了新的文献求助10
2秒前
羊咩咩发布了新的文献求助10
3秒前
朴实的河马完成签到,获得积分10
3秒前
3秒前
3秒前
烦烦烦发布了新的文献求助10
3秒前
蓝胖子发布了新的文献求助10
4秒前
国子完成签到,获得积分10
4秒前
4秒前
清爽的曼易完成签到 ,获得积分10
5秒前
希望天下0贩的0应助OMIT采纳,获得10
5秒前
2滴水发布了新的文献求助10
6秒前
6秒前
6秒前
sssxylyy完成签到,获得积分10
6秒前
泱泱完成签到,获得积分10
7秒前
乐乐应助狂暴的蜗牛0713采纳,获得10
7秒前
小芋发布了新的文献求助20
7秒前
xielunwen发布了新的文献求助10
9秒前
852应助1203采纳,获得10
10秒前
10 g发布了新的文献求助10
10秒前
慕青应助nnn采纳,获得10
10秒前
11秒前
科研老兵发布了新的文献求助20
11秒前
11秒前
11秒前
12秒前
KK发布了新的文献求助10
13秒前
科研通AI6应助Regulus采纳,获得10
13秒前
13秒前
kingwill发布了新的文献求助10
13秒前
13秒前
蓝胖子完成签到,获得积分10
14秒前
无糖的问题完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546683
求助须知:如何正确求助?哪些是违规求助? 4632489
关于积分的说明 14627325
捐赠科研通 4574069
什么是DOI,文献DOI怎么找? 2508092
邀请新用户注册赠送积分活动 1484663
关于科研通互助平台的介绍 1455826