A deep ensemble medical image segmentation with novel sampling method and loss function

计算机科学 分割 人工智能 深度学习 任务(项目管理) 机器学习 图像分割 模式识别(心理学) 采样(信号处理) 计算机视觉 滤波器(信号处理) 经济 管理
作者
SeyedEhsan Roshan,Jafar Tanha,Mahdi Zarrin,Alireza Fakhim Babaei,Haniyeh Nikkhah,Zahra Jafari
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108305-108305 被引量:18
标识
DOI:10.1016/j.compbiomed.2024.108305
摘要

Medical image segmentation is a critical task in computer vision because of facilitating precise identification of regions of interest in medical images. This task plays an important role in disease diagnosis and treatment planning. In recent years, deep learning algorithms have exhibited remarkable performance in this domain. However, it is important to note that there are still unresolved issues, including challenges related to class imbalance and achieving higher levels of accuracy. Considering the challenges, we propose a novel approach to the semantic segmentation of medical images. In this study, a new sampling method to handle class imbalance in the medical datasets is proposed that ensures a comprehensive understanding of both abnormal tissues and background characteristics. Additionally, we propose a novel loss function inspired by exponential loss, which operates at the pixel level. To enhance segmentation performance further, we present an ensemble model comprising two UNet models with ResNet backbone. The initial model is trained on the primary dataset, while the second model is trained on the dataset obtained through our sampling method. The predictions of both models are combined using an ensemble model. We have assessed the effectiveness of our approach using three publicly available datasets: Kvasir-SEG, FLAIR MRI Low-Grade Glioma (LGG), and ISIC 2018 datasets. In our evaluation, we have compared the performance of our loss function against four different loss functions. Furthermore, we have showcased the excellence of our approach by comparing it with various state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Ava应助风清扬采纳,获得30
1秒前
江流发布了新的文献求助10
3秒前
4秒前
luckily完成签到 ,获得积分20
5秒前
111完成签到 ,获得积分10
6秒前
7秒前
笨笨梦松完成签到,获得积分10
7秒前
情怀应助夜已深采纳,获得10
9秒前
daisy完成签到,获得积分10
9秒前
科研小菜鸟完成签到 ,获得积分10
9秒前
小马甲应助派大星不科研采纳,获得10
9秒前
9秒前
10秒前
怪味跳跳糖完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
Akim应助DA采纳,获得10
13秒前
13秒前
erbdguj完成签到,获得积分10
13秒前
wanci应助牛超采纳,获得10
13秒前
zhouxy发布了新的文献求助20
14秒前
江流完成签到,获得积分10
16秒前
16秒前
芋泥芝士完成签到,获得积分10
17秒前
大熊发布了新的文献求助10
18秒前
领导范儿应助愤怒的源智采纳,获得10
18秒前
19秒前
20秒前
沉淀关注了科研通微信公众号
20秒前
林中鹿发布了新的文献求助10
20秒前
21秒前
cara完成签到,获得积分10
21秒前
21秒前
21秒前
re6irth完成签到,获得积分10
21秒前
22秒前
22秒前
zhouxy完成签到,获得积分10
22秒前
23秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241364
求助须知:如何正确求助?哪些是违规求助? 4408141
关于积分的说明 13721098
捐赠科研通 4277163
什么是DOI,文献DOI怎么找? 2347067
邀请新用户注册赠送积分活动 1344085
关于科研通互助平台的介绍 1302236