亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Terahertz Data Extraction and Analysis Based on Deep Learning Techniques for Emerging Applications

人工智能 计算机科学 深度学习 太赫兹辐射 机器学习 特征提取 材料科学 光电子学
作者
Mavis Gezimati,Ghanshyam Singh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 21174-21198 被引量:6
标识
DOI:10.1109/access.2024.3360930
摘要

Following the recent progress in the development of Terahertz (THz) generation and detection, THz technology is being widely used to characterize test sample properties in various applications including nondestructive testing, security inspection and medical applications. In this paper, we have presented a broad review of the recent usage of artificial intelligence (AI) particularly, deep learning techniques in various THz sensing, imaging, and spectroscopic applications with emphasis on their implementation for medical imaging of cancerous cells. Initially, the fundamentals principles and techniques for THz generation and detection, imaging and spectroscopy are introduced. Subsequently, a brief overview of AI – machine learning and deep learning techniques is summarized, and their performance is compared. Further, the usage of deep learning algorithms in various THz applications is reported, with focus on metamaterials design and classification, detection, reconstruction, segmentation, parameter extraction and denoising tasks. Moreover, we also report the metrics used to evaluate the performance of deep learning models and finally, the existing research challenges in the application of deep learning in THz cancer imaging applications are identified and possible solutions are suggested through emerging trends. With the continuous increase of acquired THz data – sensing, spectral and imaging, artificial intelligence has emerged as a dominant paradigm for embedded data extraction, understanding, perception, decision making and analysis. Towards this end, the integration of state-of-the-art machine learning techniques such as deep learning with THz applications enable detailed computational and theoretical analysis for better validation and verification than modelling techniques that precede the era of machine learning. The study will facilitate the large-scale clinical applications of deep learning enabled THz imaging systems for the development of smart and connected next generation healthcare systems as well as provide a roadmap for future research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书中魂我自不理会完成签到 ,获得积分10
2秒前
4秒前
kiki完成签到,获得积分10
8秒前
9秒前
kiki发布了新的文献求助10
14秒前
1分钟前
李健应助keros采纳,获得10
1分钟前
2分钟前
英俊的铭应助执源星采纳,获得10
2分钟前
ljl86400完成签到,获得积分10
2分钟前
keros发布了新的文献求助10
2分钟前
橙子味的邱憨憨完成签到 ,获得积分10
2分钟前
2分钟前
执源星发布了新的文献求助10
2分钟前
keros完成签到,获得积分10
2分钟前
慕青应助BakerStreet采纳,获得10
2分钟前
3分钟前
hugo发布了新的文献求助30
3分钟前
yangquanquan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
CipherSage应助Puan采纳,获得10
4分钟前
宁静完成签到 ,获得积分10
4分钟前
李健的粉丝团团长应助Ya采纳,获得10
5分钟前
5分钟前
Ya完成签到,获得积分10
5分钟前
5分钟前
Puan发布了新的文献求助10
5分钟前
Ya发布了新的文献求助10
5分钟前
6分钟前
7分钟前
慕青应助牧谷采纳,获得10
8分钟前
Aaron完成签到 ,获得积分0
8分钟前
小赵发布了新的文献求助10
8分钟前
binyao2024完成签到,获得积分10
9分钟前
酷波er应助科研通管家采纳,获得10
9分钟前
田様应助科研通管家采纳,获得10
9分钟前
MchemG应助小赵采纳,获得10
9分钟前
牧谷完成签到,获得积分10
9分钟前
9分钟前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Parametric Random Vibration 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853922
求助须知:如何正确求助?哪些是违规求助? 3396440
关于积分的说明 10596808
捐赠科研通 3118347
什么是DOI,文献DOI怎么找? 1718580
邀请新用户注册赠送积分活动 827620
科研通“疑难数据库(出版商)”最低求助积分说明 776926