已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical Optimization Scheduling Algorithm for Logistics Transport Vehicles Based on Multi-Agent Reinforcement Learning

强化学习 计算机科学 马尔可夫决策过程 调度(生产过程) 数学优化 作业车间调度 增强学习 马尔可夫过程 人工智能 地铁列车时刻表 数学 统计 操作系统
作者
Min Zhang,Chaohong Pan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 3108-3117 被引量:3
标识
DOI:10.1109/tits.2023.3337334
摘要

How to effectively improve the cargo assembly and multi-vehicle stratified planning has become an urgent problem to be solved. In this paper, Multi-Agent Reinforcement Learning Hierarchical Optimal Scheduling Algorithm (MARLHOSA) is proposed to solve the hierarchical scheduling problem of logistics transport vehicles. We model the hierarchical scheduling problem of logistics transport vehicles as an infinite Markov decision process and set constraints to simulate the actual operating environment. To solve the Markov decision process corresponding to the economic scheduling problem of logistics transport vehicles, this paper uses the close-range strategy optimization algorithm, and uses multi-agent reinforcement learning algorithm based on the clipping mechanism to improve the loss function of the short-range strategy optimization algorithm. In addition, a distributed training architecture was designed for the training process of the close-range strategy optimization algorithm, so as to improve the speed of data collection and training speed and quality. According to a demand order put forward by the company, a path-loading collaborative optimization model was established. After solving the model, the number of vehicles dispatched by each vehicle type according to the optimal path-loading scheme of each vehicle type was determined. The simulation results show that the proposed improved distributed proximity strategy optimization algorithm can achieve the same economic performance as the numerical optimization method. Compared with the traditional algorithm, MARLHOSA can reduce the total vehicle mileage by 34.5% and increase the average loading rate of the carriage by 28.6%. The optimization effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助alhn采纳,获得10
4秒前
100发布了新的文献求助10
9秒前
风枫叶发布了新的文献求助10
14秒前
科研通AI5应助陈子豪采纳,获得10
17秒前
马文杰完成签到,获得积分10
17秒前
撑撑的烤红薯完成签到 ,获得积分10
19秒前
yurany完成签到 ,获得积分10
19秒前
科研狗完成签到 ,获得积分10
27秒前
瓦力完成签到 ,获得积分10
33秒前
大个应助吧啦吧啦采纳,获得10
34秒前
34秒前
活泼的踏歌完成签到,获得积分10
39秒前
39秒前
ambition发布了新的文献求助10
40秒前
LabRat完成签到 ,获得积分10
41秒前
42秒前
渔渔完成签到 ,获得积分10
42秒前
大灰狼完成签到 ,获得积分10
44秒前
44秒前
45秒前
47秒前
李爱国应助zhangxinxin采纳,获得10
48秒前
吧啦吧啦发布了新的文献求助10
49秒前
不舍天真完成签到,获得积分10
52秒前
alhn发布了新的文献求助10
52秒前
科研通AI5应助丰富的明轩采纳,获得10
54秒前
54秒前
汉堡包应助饭团0814采纳,获得10
55秒前
zhangxinxin发布了新的文献求助10
59秒前
1分钟前
1分钟前
孙俪发布了新的文献求助10
1分钟前
斑其发布了新的文献求助10
1分钟前
yelv123发布了新的文献求助30
1分钟前
1分钟前
1分钟前
饭团0814发布了新的文献求助10
1分钟前
望十五月完成签到,获得积分10
1分钟前
善良的剑通应助H_C采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780696
求助须知:如何正确求助?哪些是违规求助? 3326187
关于积分的说明 10226179
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758701