Multi-task oriented diffusion model for mortality prediction in shock patients with incomplete data

计算机科学 休克(循环) 缺少数据 数据挖掘 任务(项目管理) 机器学习 医学 管理 内科学 经济
作者
Weijie Zhao,Zihang Chen,Puguang Xie,Jinyang Liu,Siyu Hou,Liang Xu,Yuan Qiu,Dongdong Wu,Jingjing Xiao,Kunlun He
出处
期刊:Information Fusion [Elsevier BV]
卷期号:105: 102207-102207 被引量:3
标识
DOI:10.1016/j.inffus.2023.102207
摘要

Mortality prediction based on electronic medical records is crucial for treatment decisions of shock patients in the ICU. Although clinical data on such patients often contain many missing values, the multi-view property of medical data could compensate for such missing information. Traditionally, mortality prediction models are built as two-stage approaches with additional data imputation steps, leading to issues in which the local optimal model at each step may not necessarily obtain a globally optimal solution. To overcome this problem, we conducted a multi-centre study using real-world data and aimed to develop an end-to-end mortality prediction model for shock patients. A Multi-task Oriented Diffusion Model (MODM) is proposed to fill in missing values and predict mortality simultaneously. Specifically, the model incorporates label information from different tasks to guide the optimal direction and effectively reduce uncertainty in the diffusion process. In addition, we propose a self-adjusting training strategy that balances the convergence rates among different tasks. The two largest well-known ICU datasets were used in this study, where 14,278 shock patients from eICU-CRD (2018) were included in the internal experiment, and 5,310 shock patients from MIMIC-IV (2012) were used as an external test. Compared with 14 state-of-the-art methods, the proposed model achieved the best performance with an AUC of 0.7998 in mortality prediction and notably good performance in terms of RMSE (0.0058, 0.0034, 0.0030, 0.0027) and MAE (0.3959, 0.4358, 0.4975, 0.5435) at random missing rates (10%, 30%, 50%, 70%, respectively) in the data imputation stage. The experimental results indicate the superiority of the proposed end-to-end MODM algorithm in handling real-world data. We released our code at .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
愤怒的盼山完成签到 ,获得积分10
2秒前
v杨v完成签到,获得积分10
4秒前
4秒前
大知闲闲完成签到,获得积分10
4秒前
sciq完成签到,获得积分10
5秒前
xiaoqi完成签到,获得积分10
5秒前
chenyou完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
lvxin完成签到,获得积分10
7秒前
8秒前
情怀应助青1995采纳,获得10
10秒前
10秒前
浮游应助薄雪草采纳,获得10
12秒前
Louislee发布了新的文献求助10
12秒前
宋祝福完成签到 ,获得积分10
13秒前
13秒前
Lumosii发布了新的文献求助10
14秒前
opp完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
拼搏凌雪发布了新的文献求助30
16秒前
文献发布了新的文献求助10
17秒前
18秒前
19秒前
rmbsLHC发布了新的文献求助10
20秒前
三桥aq完成签到,获得积分10
21秒前
Orange应助杨宁采纳,获得10
21秒前
虚心的灵煌完成签到,获得积分10
23秒前
23秒前
莫默应助yuananw采纳,获得10
24秒前
青1995发布了新的文献求助10
25秒前
卷aaaa完成签到,获得积分10
25秒前
梓歆完成签到 ,获得积分10
26秒前
不配.应助殷勤的紫槐采纳,获得300
26秒前
大意的柚子完成签到,获得积分10
27秒前
27秒前
Lynn完成签到,获得积分10
27秒前
29秒前
领导范儿应助小章鱼采纳,获得10
29秒前
打打应助YE采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057345
求助须知:如何正确求助?哪些是违规求助? 4282678
关于积分的说明 13346384
捐赠科研通 4099744
什么是DOI,文献DOI怎么找? 2244412
邀请新用户注册赠送积分活动 1250543
关于科研通互助平台的介绍 1181032