A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyi完成签到,获得积分10
刚刚
jzyy发布了新的文献求助10
1秒前
桃子发布了新的文献求助30
1秒前
情怀应助露亮采纳,获得10
2秒前
2秒前
今安发布了新的文献求助30
2秒前
2秒前
田様应助胖胖采纳,获得10
2秒前
3秒前
kelaibing完成签到,获得积分10
3秒前
研友_VZG7GZ应助思与省采纳,获得10
4秒前
belleee完成签到,获得积分10
4秒前
kiki发布了新的文献求助10
4秒前
4秒前
笑点低的靳完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
赘婿应助蝉鸣采纳,获得10
5秒前
5秒前
6秒前
wind完成签到,获得积分10
6秒前
活泼的小蘑菇完成签到,获得积分10
7秒前
7秒前
布饭a完成签到 ,获得积分10
7秒前
传奇3应助mo采纳,获得10
7秒前
Huang37完成签到,获得积分10
7秒前
buxiangshangxue完成签到 ,获得积分10
7秒前
8秒前
zho发布了新的文献求助10
8秒前
8秒前
郭小胖14完成签到,获得积分10
8秒前
深情安青应助呆萌的雪碧采纳,获得10
9秒前
Yangy_发布了新的文献求助10
9秒前
隐形衬衫完成签到 ,获得积分10
10秒前
zychaos发布了新的文献求助10
10秒前
10秒前
CodeCraft应助熊猫苏采纳,获得10
10秒前
明天肯定学习完成签到,获得积分20
10秒前
Calvin完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798