Single-shot microscopic autofocus focusing on image detail features

自动对焦 计算机科学 计算机视觉 人工智能 纹理(宇宙学) 特征(语言学) 特征提取 人工神经网络 图像(数学) 模式识别(心理学) GSM演进的增强数据速率 光学 光学(聚焦) 物理 语言学 哲学
作者
Zhijie Hua,Xu Zhang,Dawei Tu,Jiale Chen,Mengting Qian
标识
DOI:10.1117/12.3021718
摘要

Autofocus plays an important role in microscopic imaging. As an extension of image-based methods, learning-based methods make real-time autofocus possible. The recently proposed learning-based autofocus methods achieved promising results in estimating defocus distance. However, the focusing accuracy depends partly on the feature extraction ability of the network model, and what features are specifically extracted by the network contributed to its success remains a mystery. In this paper, a single-shot microscopic autofocus method was proposed, which predicts the defocus distance from a single natural image, to improve the model's ability to extract image detail features. Furthermore, we validate that the neural network model mainly predicts the defocus distance by focusing on the sharpness of texture and edge features, and visualize the weight of the predicting results. A realistic dataset of sufficient size was made to train all models. The experiment shows the proposed network model has better focusing accuracy compared with other models, with a mean focusing error of 0.44μm, and pays more attention to the texture and edge features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HAHAHA完成签到,获得积分10
刚刚
空白完成签到,获得积分10
1秒前
pluto应助科研通管家采纳,获得20
1秒前
1秒前
Hunting完成签到 ,获得积分10
1秒前
IBMffff发布了新的文献求助30
2秒前
Owen应助科研通管家采纳,获得10
4秒前
常尽欢完成签到 ,获得积分10
5秒前
王羊补牢完成签到 ,获得积分10
6秒前
迷你的水绿完成签到,获得积分10
6秒前
惜曦发布了新的文献求助10
7秒前
nozero应助黑色幽默采纳,获得50
7秒前
NexusExplorer应助烯灯采纳,获得10
8秒前
9秒前
欢城发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
10秒前
煎饼狗子完成签到,获得积分10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
12秒前
15秒前
斯文败类应助maclogos采纳,获得10
15秒前
龙仔关注了科研通微信公众号
15秒前
上官若男应助crystal采纳,获得10
17秒前
17秒前
17秒前
18秒前
剑圣不会斩完成签到,获得积分10
19秒前
19秒前
19秒前
英俊的铭应助随梦而飞采纳,获得10
19秒前
zz完成签到 ,获得积分10
20秒前
qianyu完成签到,获得积分10
20秒前
20秒前
Jasper应助Lu采纳,获得10
22秒前
22秒前
研友_LjVkzL完成签到,获得积分10
22秒前
22秒前
風声鶴唳完成签到,获得积分10
23秒前
冷语完成签到,获得积分10
24秒前
情怀应助Duan采纳,获得10
24秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828014
求助须知:如何正确求助?哪些是违规求助? 3370280
关于积分的说明 10462497
捐赠科研通 3090257
什么是DOI,文献DOI怎么找? 1700281
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442