Efficient Analysis of Interdependencies in Electrode Manufacturing Through Joint Application of Design of Experiments and Explainable Machine Learning

相互依存 计算机科学 过程(计算) 商业化 生产(经济) 鉴定(生物学) 工业工程 系统工程 机器学习 人工智能 工程类 宏观经济学 经济 操作系统 法学 生物 植物 政治学
作者
Sajedeh Haghi,Josef Keilhofer,Nico Schwarz,Pengdan He,Rüdiger Daub
出处
期刊:Batteries & supercaps [Wiley]
卷期号:7 (2) 被引量:9
标识
DOI:10.1002/batt.202300457
摘要

Abstract Battery cell production is a key contributor to achieving a net‐zero future. A comprehensive understanding of the various process steps and their interdependencies is essential for speeding up the commercialization of newly developed materials and optimizing production processes. While several approaches have been employed to analyze and understand the complexity of the process chain and its interdependencies – ranging from expert‐ and simulation‐based to data‐driven – the latter holds significant potential for real‐time application. This is particularly relevant for inline process control and optimization. To streamline the development and implementation of data‐driven models, a holistic framework that encompasses all necessary steps – from identification of relevant parameters and generation of data to development of models – is imperative. This article aims to address this objective by presenting a comprehensive and systematic methodology, demonstrated for efficient cross‐process analysis in electrode manufacturing. Through the combined utilization of design of experiments methods, data‐driven models, and explainable machine learning methods, the interdependencies between production parameters and the physical, mechanical, and electrochemical characteristics of the electrodes were uncovered. These actionable insights are essential for enabling informed decision‐making, facilitating the selection of appropriate process parameters, and ultimately optimizing the production process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助阔达宝莹采纳,获得10
刚刚
Dryad完成签到,获得积分10
1秒前
水果发布了新的文献求助10
2秒前
2秒前
Jasper应助清爽紫翠采纳,获得10
3秒前
BowieHuang应助聪明忆梅采纳,获得10
3秒前
思琪HMH发布了新的文献求助10
3秒前
有魅力的沧海完成签到 ,获得积分10
4秒前
科研通AI2S应助早睡早起采纳,获得10
4秒前
Alchemist完成签到,获得积分10
6秒前
xcx发布了新的文献求助10
6秒前
传奇3应助留白采纳,获得10
6秒前
研友_VZG7GZ应助会飞的蜗牛采纳,获得10
7秒前
7秒前
8秒前
olekravchenko应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得30
8秒前
大龙哥886应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
酷波er应助Panda采纳,获得10
10秒前
我是老大应助JJ采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537552
求助须知:如何正确求助?哪些是违规求助? 4625058
关于积分的说明 14594445
捐赠科研通 4565526
什么是DOI,文献DOI怎么找? 2502476
邀请新用户注册赠送积分活动 1481047
关于科研通互助平台的介绍 1452224