AUTOMATIC COLORIZATION OF CHINESE INK PAINTING COMBINING MULTI-LEVEL FEATURES AND GENERATIVE ADVERSARIAL NETWORKS

墨水池 绘画 中国画 人工智能 计算机科学 白色(突变) 模式识别(心理学) 计算机视觉 视觉艺术 艺术 语音识别 生物化学 基因 化学
作者
Bing Wu,Qingshuang Dong,Wenqi Sun
出处
期刊:Fractals [World Scientific]
卷期号:31 (06) 被引量:6
标识
DOI:10.1142/s0218348x23401448
摘要

Advanced Chinese ink painting also includes work-brush flower and bird paintings with brilliant colors, in contrast to traditional ink paintings that often only use water, ink, and black and white. This serves as the foundation for our investigation into a generalized transfer problem involving ink and wash, or an ink painting coloring problem. Our goal is to automatically colorize black and white ink paintings using deep neural networks. This study can serve as a guide for coloring ink paintings and broaden the range of applications for ink painting style transfer. The high-level semantic information and low-level local features of ink paintings cannot be successfully extracted using the current generalized style transfer approach (colorization algorithm). The resulting images have muddy borders and low color saturation. In order to improve the accuracy and coherence of the coloring of ink paintings, we build training by combining the global and local features of ink paintings with the achievements of generative adversarial networks already made in the field of colorization. Comparative and objective evaluations of the experimental portion are made using metrics like peak signal-to-noise ratio (PSNR), structural similarity (SSIM), colorfulness, and user studies. Additionally, our approach beats the previous comparison approaches in terms of creative expression, color richness, and color overflow management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咎青文完成签到,获得积分10
2秒前
勤奋的灯完成签到 ,获得积分10
8秒前
ZZzz完成签到 ,获得积分10
12秒前
威武谷南完成签到,获得积分10
13秒前
幸福妙柏完成签到 ,获得积分10
13秒前
个性破茧完成签到 ,获得积分10
14秒前
科科通通完成签到,获得积分10
17秒前
风中的向卉完成签到 ,获得积分10
17秒前
小丑岩完成签到,获得积分10
21秒前
22秒前
dd完成签到,获得积分10
23秒前
fatcat完成签到,获得积分10
25秒前
共享精神应助huafornol采纳,获得10
27秒前
cdercder应助钱念波采纳,获得10
28秒前
30秒前
SCI的芷蝶完成签到 ,获得积分10
34秒前
strama完成签到,获得积分10
34秒前
dldldl完成签到,获得积分10
38秒前
MQQ完成签到 ,获得积分10
43秒前
chenjiaye完成签到 ,获得积分10
44秒前
shanmao完成签到 ,获得积分10
45秒前
喜悦宫苴完成签到,获得积分10
47秒前
搜集达人应助lelele采纳,获得10
48秒前
cdercder应助科研通管家采纳,获得10
53秒前
情怀应助科研通管家采纳,获得10
53秒前
55秒前
Manzia完成签到,获得积分10
56秒前
Boris完成签到 ,获得积分10
57秒前
树池完成签到,获得积分10
57秒前
lelele完成签到,获得积分10
58秒前
58秒前
caibaozi完成签到,获得积分10
1分钟前
真实的采白完成签到 ,获得积分10
1分钟前
lelele发布了新的文献求助10
1分钟前
alexlpb完成签到,获得积分0
1分钟前
chenhang1894完成签到,获得积分10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
doclarrin完成签到 ,获得积分10
1分钟前
酷波er应助和谐的寒安采纳,获得10
1分钟前
大桥完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859