材料科学
高电子迁移率晶体管
光电子学
铁电性
异质结
氮化镓
极化(电化学)
半导体
费米气体
晶体管
纳米技术
电压
图层(电子)
电子
电气工程
电介质
化学
物理
物理化学
量子力学
工程类
作者
Jeong Yong Yang,Minseong Park,Min Jae Yeom,Yongmin Baek,Seok Chan Yoon,Yeong Je Jeong,S. Y. Oh,Kyusang Lee,Geonwook Yoo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-04-04
卷期号:17 (8): 7695-7704
被引量:27
标识
DOI:10.1021/acsnano.3c00187
摘要
Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-In2Se3 ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-In2Se3 provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-In2Se3 features a steep subthreshold slope with a high ON/OFF ratio (∼1010). The self-aligned α-In2Se3 layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-In2Se3, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-In2Se3 HEMT can provide a viable pathway toward ultrafast neuromorphic computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI