Continuous Room‐Temperature Spin‐Injection Modulation Achieved by Spin‐Filtering Competition in Molecular Spin Valves

自旋电子学 材料科学 自旋极化 旋转阀 自旋等离子体光子学 自旋(空气动力学) 铁磁性 凝聚态物理 纳米技术 自旋工程 化学物理 自旋霍尔效应 光电子学 磁电阻 化学 物理 热力学 量子力学 磁场 电子
作者
Shunhua Hu,Wei Liu,Lidan Guo,Rui Zhang,Xianrong Gu,Ke Meng,Qin Yang,Ankang Guo,Tingting Yang,Cheng Zhang,Xueli Yang,Shuhang Lu,Meng Wu,Kun Lü,Ting Tan,Erjun Zhou,Zhixiang Wei,Xiangnan Sun
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (31) 被引量:8
标识
DOI:10.1002/adma.202300055
摘要

Abundant spin-related phenomena that originate from interfaces between ferromagnetic electrodes and molecular semiconductors have greatly enriched research in spintronics, and they are considered promising for realizing novel spintronic functionalities in the future. However, despite great effort, the interfacial effect cannot be precisely controlled to achieve steady and predictable functions, especially at room temperature, and this has gradually become a significant bottleneck in the development of molecular spintronics. In this study, an innovative spin-filtering-competition mechanism is proposed to continuously modulate the interfacial effect in molecular spin valves at room temperature. To form this novel mechanism, the original spin-filtering effect from pure cobalt competes with the newly generated one, which is induced by the bonding effect between cobalt and lithium fluoride. Subsequently, by precisely controlling competition through lithium fluoride coverage on the cobalt surface, continuous modulation of the spin-injection process can be successfully achieved at room temperature. Spin polarization of the injected current and magnetoresistance effect can be actively controlled or their sign can be completely reversed through this novel mechanism. This study provides an innovative approach and theory for precisely controlling spin-related interfacial effects, which may further promote the scientific and technological development of spintronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzznznnn发布了新的文献求助10
刚刚
刚刚
大个应助dawei采纳,获得10
刚刚
jinjinjin发布了新的文献求助10
刚刚
刚刚
刚刚
丘比特应助gs采纳,获得10
1秒前
1秒前
天天快乐应助欢喜的如蓉采纳,获得30
2秒前
科目三应助jiecao采纳,获得10
3秒前
科研通AI5应助小東采纳,获得10
3秒前
栗子完成签到,获得积分10
4秒前
4秒前
NN应助爱听歌忆枫采纳,获得10
4秒前
4秒前
gxqqqqqqq完成签到,获得积分10
4秒前
666完成签到,获得积分10
4秒前
4秒前
咕噜咕噜完成签到,获得积分10
5秒前
顾矜应助小奋青采纳,获得10
5秒前
歪比八不发布了新的文献求助10
5秒前
5秒前
18216781882发布了新的文献求助10
5秒前
6秒前
6秒前
落寒完成签到,获得积分10
6秒前
7秒前
7秒前
小東完成签到,获得积分10
7秒前
ZL发布了新的文献求助10
7秒前
冰箱发布了新的文献求助10
8秒前
8秒前
挚zhi完成签到,获得积分20
8秒前
科研通AI5应助ww采纳,获得10
8秒前
RUI完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219