Deep-learning based segmentation of the placenta and uterine cavity on prenatal MR images

分割 人工智能 计算机科学 胎盘 图像分割 计算机视觉 怀孕 胎儿 生物 遗传学
作者
James Huang,Quyen N. Do,Maysam Shahedi,Yin Xi,Matthew Lewis,Christina L. Herrera,David M. Owen,Catherine Y. Spong,Ananth J. Madhuranthakam,Diane M. Twickler,Baowei Fei
标识
DOI:10.1117/12.2653659
摘要

Magnetic resonance imaging (MRI) has potential benefits in understanding fetal and placental complications in pregnancy. An accurate segmentation of the uterine cavity and placenta can help facilitate fast and automated analyses of placenta accreta spectrum and other pregnancy complications. In this study, we trained a deep neural network for fully automatic segmentation of the uterine cavity and placenta from MR images of pregnant women with and without placental abnormalities. The two datasets were axial MRI data of 241 pregnant women, among whom, 101 patients also had sagittal MRI data. Our trained model was able to perform fully automatic 3D segmentation of MR image volumes and achieved an average Dice similarity coefficient (DSC) of 92% for uterine cavity and of 82% for placenta on the sagittal dataset and an average DSC of 87% for uterine cavity and of 82% for placenta on the axial dataset. Use of our automatic segmentation method is the first step in designing an analyticstool for to assess the risk of pregnant women with placenta accreta spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
也曦完成签到,获得积分10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得30
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
传奇3应助问梅采纳,获得10
1秒前
1秒前
1秒前
Ava应助申申采纳,获得10
1秒前
元万天应助CC采纳,获得30
1秒前
猪猪hero发布了新的文献求助10
2秒前
曾梦发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
桐桐应助诺亚方舟哇哈哈采纳,获得10
4秒前
TANG发布了新的文献求助10
4秒前
5秒前
跳跃的中蓝完成签到,获得积分10
5秒前
5秒前
Jasper应助魔道祖师采纳,获得10
6秒前
6秒前
liumengyuan完成签到,获得积分20
8秒前
芍药完成签到 ,获得积分10
8秒前
Tzzl0226发布了新的文献求助10
8秒前
苦行僧完成签到 ,获得积分10
9秒前
10秒前
wsxx200024发布了新的文献求助10
10秒前
orixero应助Tail采纳,获得10
10秒前
紫贝壳完成签到 ,获得积分10
10秒前
mmmm发布了新的文献求助30
10秒前
10秒前
13秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608