Opportunities and Challenges of Cardiovascular Disease Risk Prediction for Primary Prevention Using Machine Learning and Electronic Health Records: A Systematic Review

医学 健康档案 初级预防 疾病 电子健康档案 心血管健康 重症监护医学 内科学 医疗保健 经济 经济增长
作者
Tianyi Liu,Andrew J. Krentz,Zhiqiang Huo,Vasa Ćurčin
出处
期刊:Reviews in Cardiovascular Medicine [IMR Press]
卷期号:26 (4)
标识
DOI:10.31083/rcm37443
摘要

Cardiovascular disease (CVD) remains the foremost cause of morbidity and mortality worldwide. Recent advancements in machine learning (ML) have demonstrated substantial potential in augmenting risk stratification for primary prevention, surpassing conventional statistical models in predictive performance. Thus, integrating ML with Electronic Health Records (EHRs) enables refined risk estimation by leveraging the granularity and breadth of longitudinal individual patient data. However, fundamental barriers persist, including limited generalizability, challenges in interpretability, and the absence of rigorous external validation, all of which impede widespread clinical deployment. This review adheres to the methodological rigor of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Scale for the Assessment of Narrative Review Articles (SANRA) guidelines. A systematic literature search was performed in March 2024, encompassing the Medline and Embase databases, to identify studies published since 2010. Supplementary references were retrieved from the Institute for Scientific Information (ISI) Web of Science, and manual searches were curated. The selection process, conducted via Rayyan, focused on systematic and narrative reviews evaluating ML-driven models for long-term CVD risk prediction within primary prevention contexts utilizing EHR data. Studies investigating short-term prognostication, highly specific comorbid cohorts, or conventional models devoid of ML components were excluded. Following an exhaustive screening of 1757 records, 22 studies met the inclusion criteria. Of these, 10 were systematic reviews (four incorporating meta-analyses), while 12 constituted narrative reviews, with the majority published post-2020. The synthesis underscores the superiority of ML in modeling intricate EHR-derived risk factors, facilitating precision-driven cardiovascular risk assessment. Nonetheless, salient challenges endure heterogeneity in CVD outcome definitions, undermine comparability, data incompleteness and inconsistency compromise model robustness, and a dearth of external validation constrains clinical translatability. Moreover, ethical and regulatory considerations, including algorithmic opacity, equity in predictive performance, and the absence of standardized evaluation frameworks, pose formidable obstacles to seamless integration into clinical workflows. Despite the transformative potential of ML-based CVD risk prediction, it remains encumbered by methodological, technical, and regulatory impediments that hinder its full-scale adoption into real-world healthcare settings. This review underscores the imperative circumstances for standardized validation protocols, stringent regulatory oversight, and interdisciplinary collaboration to bridge the translational divide. Our findings established an integrative framework for developing, validating, and applying ML-based CVD risk prediction algorithms, addressing both clinical and technical dimensions. To further advance this field, we propose a standardized, transparent, and regulated EHR platform that facilitates fair model evaluation, reproducibility, and clinical translation by providing a high-quality, representative dataset with structured governance and benchmarking mechanisms. Meanwhile, future endeavors must prioritize enhancing model transparency, mitigating biases, and ensuring adaptability to heterogeneous clinical populations, fostering equitable and evidence-based implementation of ML-driven predictive analytics in cardiovascular medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光风霁月完成签到 ,获得积分10
1秒前
英俊的铭应助过时的又槐采纳,获得10
2秒前
嵩嵩发布了新的文献求助10
2秒前
咩咩羊发布了新的文献求助10
2秒前
无为完成签到 ,获得积分10
3秒前
鱼子酱果冻完成签到,获得积分10
4秒前
可爱的函函应助wqx采纳,获得10
8秒前
8秒前
健壮的傲丝完成签到,获得积分20
8秒前
NexusExplorer应助永曼采纳,获得10
8秒前
9秒前
9秒前
文静秋双发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Lucas应助自然的冥王星采纳,获得10
11秒前
zho应助zjw采纳,获得10
12秒前
丫丫发布了新的文献求助10
12秒前
健康幸福的大美女完成签到,获得积分10
12秒前
文静翅膀发布了新的文献求助10
13秒前
13秒前
倦梦还发布了新的文献求助10
13秒前
菠萝完成签到 ,获得积分10
13秒前
科研通AI5应助Liam要动脑采纳,获得10
16秒前
小毛毛发布了新的文献求助10
17秒前
小二郎应助丫丫采纳,获得10
19秒前
科研通AI2S应助加百莉采纳,获得10
19秒前
张灬小胖发布了新的文献求助10
19秒前
AST完成签到,获得积分10
20秒前
英勇的寒蕾完成签到,获得积分10
20秒前
闪闪小小完成签到 ,获得积分10
21秒前
华仔应助pantutu采纳,获得10
24秒前
24秒前
万一完成签到 ,获得积分20
26秒前
26秒前
Owen应助yls采纳,获得10
26秒前
26秒前
Ava应助张灬小胖采纳,获得10
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
Erectile dysfunction From bench to bedside 200
Integrated supply chain risk management capabilities and its impact on supply chain demand management - an empirical study 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824680
求助须知:如何正确求助?哪些是违规求助? 3366960
关于积分的说明 10443806
捐赠科研通 3086316
什么是DOI,文献DOI怎么找? 1697916
邀请新用户注册赠送积分活动 816568
科研通“疑难数据库(出版商)”最低求助积分说明 769826