Monocular 3D Lane Detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks

单眼 计算机科学 计算机视觉 单目视觉 人工智能
作者
Fulong Ma,Weiqing Qi,Guoyang Zhao,Linwei Zheng,Sheng Wang,Yuxuan Liu,Ming Liu,Jun Ma
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 7380-7400 被引量:7
标识
DOI:10.1109/tits.2025.3550745
摘要

3D lane detection is essential in autonomous driving (AD) as it extracts structural and traffic information from the road in 3D space, aiding autonomous vehicles in logical, safe, and comfortable path planning and motion control. Given the cost of sensors and the advantages of visual data in color information, 3D lane detection based on monocular vision is an important research direction in the realm of AD that increasingly gains attention in both industry and academia. Nevertheless, recent advancements in visual perception seem inadequate for the development of fully reliable 3D lane detection algorithms, which also hampers the progress of vision-based fully autonomous vehicles. We believe that it still leaves an open and interesting problem for improvement in 3D lane detection algorithms for autonomous vehicles using visual sensors, and significant enhancements are essentially required. This review summarizes and analyzes the current state of achievements in the field of 3D lane detection research. It covers all current monocular-based 3D lane detection processes, discusses the performance of these cutting-edge algorithms, analyzes the time complexity of various algorithms, and highlights the main achievements and limitations of ongoing research efforts. The survey also includes a comprehensive discussion of available 3D lane detection datasets and the challenges that researchers encounter but have not yet resolved. Finally, our work outlines future research directions and invites researchers and practitioners to join this exciting field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ludong_0应助笙霜半夏采纳,获得10
刚刚
生命科学的第一推动力完成签到 ,获得积分10
刚刚
英俊的小蝴蝶完成签到,获得积分10
1秒前
1秒前
俊逸的鲜花完成签到,获得积分10
1秒前
科研通AI2S应助爱睡觉采纳,获得10
2秒前
2秒前
why完成签到,获得积分10
3秒前
庚小马发布了新的文献求助10
4秒前
日光下完成签到 ,获得积分10
4秒前
4秒前
lmh完成签到,获得积分10
4秒前
醋酸柠檬完成签到,获得积分10
6秒前
包容的映天完成签到 ,获得积分10
6秒前
乾乾完成签到,获得积分10
7秒前
111应助勤劳尔容采纳,获得10
7秒前
浮游应助谁在说话采纳,获得10
7秒前
wuyisha完成签到,获得积分10
7秒前
充电宝应助lou采纳,获得10
7秒前
蝈蝈发布了新的文献求助10
8秒前
乐乐完成签到,获得积分10
8秒前
luoluo完成签到,获得积分10
8秒前
研友_Z6kxK8发布了新的文献求助10
9秒前
9秒前
噜噜噜噜噜完成签到,获得积分10
9秒前
想看不眠日记完成签到,获得积分10
10秒前
自信的昊焱完成签到,获得积分10
10秒前
hqhbj77完成签到,获得积分10
10秒前
踏实谷蓝完成签到 ,获得积分10
10秒前
巫郁完成签到,获得积分10
10秒前
11秒前
Tuyen完成签到,获得积分10
11秒前
不想太多完成签到,获得积分10
11秒前
温婉的访风完成签到,获得积分10
11秒前
xianyu完成签到,获得积分10
11秒前
11秒前
12秒前
艾达乳酪块完成签到,获得积分10
12秒前
明天完成签到,获得积分10
14秒前
牛油果完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886