Artificial intelligence in nursing: an integrative review of clinical and operational impacts

护理部 心理学 医学
作者
Salwa Hassanein,Rabie Adel El Arab,Amany Abdrbo,Mohammad S. Abu‐Mahfouz,Mastoura Khames Farag Gaballah,Mohamed Mahmoud Seweid,Mohammad Almari,Husam Alzghoul
出处
期刊:Frontiers in digital health [Frontiers Media]
卷期号:7
标识
DOI:10.3389/fdgth.2025.1552372
摘要

Background Advances in digital technologies and artificial intelligence (AI) are reshaping healthcare delivery, with AI increasingly integrated into nursing practice. These innovations promise enhanced diagnostic precision, improved operational workflows, and more personalized patient care. However, the direct impact of AI on clinical outcomes, workflow efficiency, and nursing staff well-being requires further elucidation. Methods This integrative review synthesized findings from 18 studies published through November 2024 across diverse healthcare settings. Using the PRISMA 2020 and SPIDER frameworks alongside rigorous quality appraisal tools (MMAT and ROBINS-I), the review examined the multifaceted effects of AI integration in nursing. Our analysis focused on three principal domains: clinical advancements and patient monitoring, operational efficiency and workload management, and ethical implications. Results The review demonstrates that AI integration in nursing has yielded substantial clinical and operational benefits. AI-powered monitoring systems, including wearable sensors and real-time alert platforms, have enabled nurses to detect subtle physiological changes—such as early fever onset or pain indicators—well before traditional methods, resulting in timely interventions that reduce complications, shorten hospital stays, and lower readmission rates. For example, several studies reported that early-warning algorithms facilitated faster clinical responses, thereby improving patient safety and outcomes. Operationally, AI-based automation of routine tasks (e.g., scheduling, administrative documentation, and predictive workload classification) has streamlined resource allocation. These efficiencies have led to a measurable reduction in nurse burnout and improved job satisfaction, as nurses can devote more time to direct patient care. However, despite these benefits, ethical challenges remain prominent. Key concerns include data privacy risks, algorithmic bias, and the potential erosion of clinical judgment due to overreliance on technology. These issues underscore the need for robust ethical frameworks and targeted AI literacy training within nursing curricula. Conclusion This review demonstrates that AI integration holds transformative potential for nursing practice by enhancing both clinical outcomes and operational efficiency. However, to realize these benefits fully, it is imperative to develop robust ethical frameworks, incorporate comprehensive AI literacy training into nursing education, and foster interdisciplinary collaboration. Future longitudinal studies across varied clinical contexts are essential to validate these findings and support the sustainable, equitable implementation of AI technologies in nursing. Policymakers and healthcare leaders must prioritize investments in AI solutions that complement the expertise of nursing professionals while addressing ethical risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuan完成签到,获得积分10
刚刚
小丸子完成签到 ,获得积分10
2秒前
俭朴的乐巧完成签到 ,获得积分10
3秒前
美海与鱼完成签到,获得积分10
3秒前
HCLonely完成签到,获得积分0
3秒前
不必要再讨论适合与否完成签到,获得积分10
3秒前
Capedem完成签到 ,获得积分10
8秒前
多边形完成签到 ,获得积分10
9秒前
qingxinhuo完成签到 ,获得积分10
12秒前
12秒前
Owen应助小灰狼采纳,获得10
14秒前
goodsheep完成签到 ,获得积分10
15秒前
nav发布了新的文献求助10
17秒前
zhing完成签到 ,获得积分10
20秒前
LL发布了新的文献求助30
22秒前
23秒前
djbj2022完成签到,获得积分10
23秒前
SOL应助碧蓝的汽车采纳,获得10
24秒前
桐桐应助cs采纳,获得10
24秒前
25秒前
尘南浔完成签到 ,获得积分10
25秒前
沉默采波完成签到 ,获得积分10
32秒前
阔达的傲MUMU完成签到 ,获得积分10
34秒前
34秒前
shepherd完成签到,获得积分10
35秒前
Solar energy发布了新的文献求助10
35秒前
hunajx完成签到,获得积分10
36秒前
shuangfeng1853完成签到 ,获得积分10
39秒前
cs发布了新的文献求助10
39秒前
杨秋月完成签到,获得积分10
43秒前
内向苡完成签到,获得积分10
50秒前
fei菲飞完成签到,获得积分10
51秒前
怡然猎豹完成签到,获得积分10
56秒前
Eri_SCI完成签到 ,获得积分10
1分钟前
甲基醚完成签到 ,获得积分10
1分钟前
1分钟前
KX2024完成签到,获得积分10
1分钟前
直率芮完成签到 ,获得积分10
1分钟前
NexusExplorer应助dongsanmuer采纳,获得10
1分钟前
NexusExplorer应助dongsanmuer采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779313
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220135
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503