Robustly Optimal Contracts for Agricultural Supply Chains

供应链 业务 产业组织 农业 计算机科学 营销 生态学 生物
作者
Zhaolin Li,Guitian Liang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01673
摘要

Because of various factors (such as a lack of adequate statistical knowledge or data, unforeseen weather events), the yields of agricultural products often exhibit a high level of ambiguity. When facing distributional ambiguity in yields, farmers and landowners may base their contracting decisions on descriptive statistics, such as the mean and variance. To investigate how limited information could reshape optimal contract forms, we consider an agricultural supply chain in which a landowner contributes farmland and a skilled farmer exerts costly private effort to cultivate a crop. Both parties face distributional ambiguity in crop yield and employ a robust max-min decision rule. When the landowner possesses the bargaining power to draft the contract (the L model), we find that a hybrid contract of debt and equity is robustly optimal. In contrast, when the farmer possesses the bargaining power (the F model), the optimal contract could be a linear (equity) contract or a nonlinear quadratic debt contract, depending on the coefficient of variation (CV) and the landowner’s reservation profit. We use U.S. Department of Agriculture data to calibrate the model and find that, as the CV increases, the party that possesses the bargaining power tends to share more risk. We also find that when both the CV and the landowner’s reservation profit are sufficiently large, the L model induces a higher effort level; otherwise, the F model achieves better effort. Finally, we extend the model to consider various features, such as random crop price, farmer’s risk aversion and bounded crop yield. This paper was accepted by Chung Piaw Teo, optimization. Funding: G. Liang was supported by the National Natural Science Foundation of China [Grant 72101097] and the Basic and Applied Basic Research Foundation of Guangdong Province [Grant 2024B1515020056]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01673 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助快来和姐妹玩采纳,获得10
1秒前
2秒前
2秒前
专注的嵩发布了新的文献求助10
2秒前
3秒前
田様应助11采纳,获得10
3秒前
4秒前
不安乐菱发布了新的文献求助10
4秒前
赘婿应助LHT采纳,获得10
5秒前
Ava应助时尚的书易采纳,获得10
5秒前
6秒前
吴欣荃发布了新的文献求助10
6秒前
6秒前
orixero应助钰泠采纳,获得10
6秒前
金子发布了新的文献求助10
7秒前
Yuxy完成签到,获得积分10
7秒前
超级完成签到,获得积分10
7秒前
麦客完成签到,获得积分10
7秒前
8秒前
研友_Lw7MKL完成签到,获得积分10
9秒前
小二郎应助小余采纳,获得10
9秒前
10秒前
科研通AI6应助刘乐艺采纳,获得30
10秒前
腼腆的戾完成签到,获得积分10
10秒前
今后应助英俊的秋白采纳,获得30
10秒前
Tizzy发布了新的文献求助150
10秒前
包子完成签到,获得积分10
11秒前
虚心焦发布了新的文献求助10
11秒前
清欢发布了新的文献求助10
11秒前
12秒前
12秒前
文静的芮完成签到,获得积分10
12秒前
美满的萝应助sadtango12采纳,获得40
12秒前
大模型应助花痴的从雪采纳,获得10
13秒前
丘比特应助橙酒采纳,获得10
13秒前
13秒前
靳顺康完成签到,获得积分10
13秒前
开心的兔子完成签到,获得积分10
13秒前
123关注了科研通微信公众号
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369