Robustly Optimal Contracts for Agricultural Supply Chains

供应链 业务 产业组织 农业 计算机科学 营销 生态学 生物
作者
Zhaolin Li,Guitian Liang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01673
摘要

Because of various factors (such as a lack of adequate statistical knowledge or data, unforeseen weather events), the yields of agricultural products often exhibit a high level of ambiguity. When facing distributional ambiguity in yields, farmers and landowners may base their contracting decisions on descriptive statistics, such as the mean and variance. To investigate how limited information could reshape optimal contract forms, we consider an agricultural supply chain in which a landowner contributes farmland and a skilled farmer exerts costly private effort to cultivate a crop. Both parties face distributional ambiguity in crop yield and employ a robust max-min decision rule. When the landowner possesses the bargaining power to draft the contract (the L model), we find that a hybrid contract of debt and equity is robustly optimal. In contrast, when the farmer possesses the bargaining power (the F model), the optimal contract could be a linear (equity) contract or a nonlinear quadratic debt contract, depending on the coefficient of variation (CV) and the landowner’s reservation profit. We use U.S. Department of Agriculture data to calibrate the model and find that, as the CV increases, the party that possesses the bargaining power tends to share more risk. We also find that when both the CV and the landowner’s reservation profit are sufficiently large, the L model induces a higher effort level; otherwise, the F model achieves better effort. Finally, we extend the model to consider various features, such as random crop price, farmer’s risk aversion and bounded crop yield. This paper was accepted by Chung Piaw Teo, optimization. Funding: G. Liang was supported by the National Natural Science Foundation of China [Grant 72101097] and the Basic and Applied Basic Research Foundation of Guangdong Province [Grant 2024B1515020056]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01673 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHDing完成签到,获得积分20
2秒前
我的麦子熟了完成签到,获得积分10
2秒前
SciGPT应助天真的灵薇采纳,获得10
3秒前
3秒前
4秒前
4秒前
cyy完成签到,获得积分10
7秒前
领导范儿应助惜曦采纳,获得10
8秒前
8秒前
xian发布了新的文献求助30
9秒前
李耀玲发布了新的文献求助10
10秒前
万能图书馆应助嘟~采纳,获得30
10秒前
10秒前
sxd完成签到,获得积分10
11秒前
13秒前
CHEN发布了新的文献求助10
13秒前
cyy发布了新的文献求助10
14秒前
14秒前
JamesPei应助泽1采纳,获得10
14秒前
16秒前
DDDD源发布了新的文献求助10
16秒前
可爱的函函应助Yezo采纳,获得10
21秒前
kento发布了新的文献求助30
22秒前
22秒前
涛涛完成签到,获得积分10
23秒前
泽1完成签到,获得积分10
24秒前
利好完成签到 ,获得积分10
24秒前
泽1发布了新的文献求助10
26秒前
在水一方应助xian采纳,获得10
29秒前
30秒前
32秒前
ww发布了新的文献求助10
36秒前
39秒前
40秒前
WWW完成签到 ,获得积分10
40秒前
leolin完成签到,获得积分10
42秒前
Passion发布了新的文献求助10
44秒前
麦麦泰发布了新的文献求助10
44秒前
科研通AI2S应助明天见采纳,获得10
45秒前
Akim应助明天见采纳,获得10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171172
求助须知:如何正确求助?哪些是违规求助? 3706702
关于积分的说明 11695196
捐赠科研通 3392474
什么是DOI,文献DOI怎么找? 1860718
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832740