Robustly Optimal Contracts for Agricultural Supply Chains

供应链 业务 产业组织 农业 计算机科学 营销 生态学 生物
作者
Zhaolin Li,Guitian Liang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01673
摘要

Because of various factors (such as a lack of adequate statistical knowledge or data, unforeseen weather events), the yields of agricultural products often exhibit a high level of ambiguity. When facing distributional ambiguity in yields, farmers and landowners may base their contracting decisions on descriptive statistics, such as the mean and variance. To investigate how limited information could reshape optimal contract forms, we consider an agricultural supply chain in which a landowner contributes farmland and a skilled farmer exerts costly private effort to cultivate a crop. Both parties face distributional ambiguity in crop yield and employ a robust max-min decision rule. When the landowner possesses the bargaining power to draft the contract (the L model), we find that a hybrid contract of debt and equity is robustly optimal. In contrast, when the farmer possesses the bargaining power (the F model), the optimal contract could be a linear (equity) contract or a nonlinear quadratic debt contract, depending on the coefficient of variation (CV) and the landowner’s reservation profit. We use U.S. Department of Agriculture data to calibrate the model and find that, as the CV increases, the party that possesses the bargaining power tends to share more risk. We also find that when both the CV and the landowner’s reservation profit are sufficiently large, the L model induces a higher effort level; otherwise, the F model achieves better effort. Finally, we extend the model to consider various features, such as random crop price, farmer’s risk aversion and bounded crop yield. This paper was accepted by Chung Piaw Teo, optimization. Funding: G. Liang was supported by the National Natural Science Foundation of China [Grant 72101097] and the Basic and Applied Basic Research Foundation of Guangdong Province [Grant 2024B1515020056]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01673 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助三点水采纳,获得10
1秒前
徐若楠发布了新的文献求助10
2秒前
bo完成签到,获得积分10
2秒前
欸嘿发布了新的文献求助10
2秒前
cc发布了新的文献求助20
3秒前
清新的秋白完成签到 ,获得积分10
5秒前
香蕉觅云应助徐若楠采纳,获得10
6秒前
8秒前
8秒前
小确幸发布了新的文献求助10
9秒前
阿邱发布了新的文献求助10
9秒前
9秒前
leaolf应助史萌采纳,获得10
9秒前
leaolf应助黑椒墨鱼采纳,获得10
10秒前
黄昏完成签到,获得积分10
10秒前
徐若楠完成签到,获得积分20
10秒前
冷艳的火龙果完成签到,获得积分10
11秒前
13秒前
小申驳回了leaolf应助
13秒前
陈含章发布了新的文献求助30
13秒前
ding应助小杨采纳,获得10
14秒前
14秒前
灵巧的灵雁完成签到,获得积分10
16秒前
1l发布了新的文献求助10
18秒前
深情牛排发布了新的文献求助100
18秒前
酷波er应助洪婉馨采纳,获得10
20秒前
20秒前
鳗鱼雪巧完成签到,获得积分10
21秒前
21秒前
zzzzz完成签到,获得积分10
22秒前
Ava应助认真初之采纳,获得10
23秒前
24秒前
倦9909发布了新的文献求助10
25秒前
宁羽发布了新的文献求助20
25秒前
抹茶木木发布了新的文献求助10
26秒前
桓某人发布了新的文献求助10
26秒前
Lucas应助柒z采纳,获得10
27秒前
27秒前
李健应助安详尔岚采纳,获得30
27秒前
云边小卖部完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Walnut Culture In California: Walnut Blight 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4797483
求助须知:如何正确求助?哪些是违规求助? 4117262
关于积分的说明 12737489
捐赠科研通 3847378
什么是DOI,文献DOI怎么找? 2120075
邀请新用户注册赠送积分活动 1142192
关于科研通互助平台的介绍 1031684