亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robustly Optimal Contracts for Agricultural Supply Chains

供应链 业务 产业组织 农业 计算机科学 营销 生态学 生物
作者
Zhaolin Li,Guitian Liang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (12): 10394-10413
标识
DOI:10.1287/mnsc.2022.01673
摘要

Because of various factors (such as a lack of adequate statistical knowledge or data, unforeseen weather events), the yields of agricultural products often exhibit a high level of ambiguity. When facing distributional ambiguity in yields, farmers and landowners may base their contracting decisions on descriptive statistics, such as the mean and variance. To investigate how limited information could reshape optimal contract forms, we consider an agricultural supply chain in which a landowner contributes farmland and a skilled farmer exerts costly private effort to cultivate a crop. Both parties face distributional ambiguity in crop yield and employ a robust max-min decision rule. When the landowner possesses the bargaining power to draft the contract (the L model), we find that a hybrid contract of debt and equity is robustly optimal. In contrast, when the farmer possesses the bargaining power (the F model), the optimal contract could be a linear (equity) contract or a nonlinear quadratic debt contract, depending on the coefficient of variation (CV) and the landowner’s reservation profit. We use U.S. Department of Agriculture data to calibrate the model and find that, as the CV increases, the party that possesses the bargaining power tends to share more risk. We also find that when both the CV and the landowner’s reservation profit are sufficiently large, the L model induces a higher effort level; otherwise, the F model achieves better effort. Finally, we extend the model to consider various features, such as random crop price, farmer’s risk aversion and bounded crop yield. This paper was accepted by Chung Piaw Teo, optimization. Funding: G. Liang was supported by the National Natural Science Foundation of China [Grant 72101097] and the Basic and Applied Basic Research Foundation of Guangdong Province [Grant 2024B1515020056]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01673 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼完成签到,获得积分10
2秒前
jiao发布了新的文献求助10
2秒前
cqcqcq完成签到 ,获得积分10
2秒前
ssu90完成签到 ,获得积分10
11秒前
24秒前
26秒前
美满的芹发布了新的文献求助50
30秒前
如意小虾米完成签到 ,获得积分10
31秒前
Papayaaa发布了新的文献求助10
32秒前
39秒前
天天快乐应助Papayaaa采纳,获得10
42秒前
上官若男应助科研通管家采纳,获得10
55秒前
隐形曼青应助科研通管家采纳,获得10
55秒前
SciGPT应助科研通管家采纳,获得10
55秒前
乐乐应助ciallo采纳,获得10
1分钟前
NEKO发布了新的文献求助10
1分钟前
欣喜的不惜完成签到 ,获得积分10
1分钟前
CipherSage应助jiao采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
美满的芹完成签到,获得积分20
2分钟前
烈阳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
完美世界应助烈阳采纳,获得10
3分钟前
Donger完成签到 ,获得积分10
3分钟前
ykk完成签到 ,获得积分10
3分钟前
3分钟前
冷静新烟完成签到 ,获得积分10
3分钟前
NEKO发布了新的文献求助30
3分钟前
3分钟前
jiao发布了新的文献求助10
3分钟前
云蓝完成签到 ,获得积分10
4分钟前
oi完成签到 ,获得积分10
4分钟前
yang完成签到 ,获得积分10
4分钟前
777关闭了777文献求助
4分钟前
Owen应助NEKO采纳,获得10
4分钟前
li完成签到 ,获得积分10
4分钟前
美满尔蓝完成签到,获得积分10
4分钟前
zxxxxxz完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853366
捐赠科研通 4689194
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608