A comparative analysis of sagittal, coronal, and axial magnetic resonance imaging planes in diagnosing anterior cruciate ligament and meniscal tears via a deep learning model: emphasizing the unexpected importance of the axial plane

冠状面 矢状面 磁共振成像 前交叉韧带 眼泪 医学 解剖 放射科 外科
作者
Guang Yang,Yubo Shi,Qiang Li
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:15 (6): 5811-5824
标识
DOI:10.21037/qims-24-1808
摘要

Anterior cruciate ligament (ACL) and meniscal injuries are commonly diagnosed with multi-plane magnetic resonance imaging (MRI), but most artificial intelligence (AI) models use single-plane input, leaving the roles of each plane underexplored. This study aimed to investigate the differential impacts and interactions of sagittal, coronal, and axial knee MRI planes on the detection of ACL tears and meniscal tears within a deep learning (DL) model. The MRNet dataset, consisting of 1,130 training cases and 120 validation cases, was employed to develop the TripleMRNet model. This model was trained on images from one, two, or three planes, resulting in seven combinations. This study systematically compared diagnostic performance across these combinations with gradient-weighted class activation mapping (Grad-CAM) providing interpretability analysis. For ACL tear detection, the three-plane model demonstrated the highest performance, achieving an accuracy (ACC) of 0.925, sensitivity (SEN) of 0.944, specificity (SPE) of 0.909, and F1 score of 0.919. The coronal model had the lowest ACC (0.842), SPE (0.833), and F1 score (0.829). For meniscal tear detection, although SEN remained similar across all seven models, the 3-plane model demonstrated superior performance in terms of ACC (0.783), SPE (0.824), and F1 score (0.745). The axial model ranked just below the 3-plane model across these three metrics, with only a slight margin. Conversely, the sagittal model performed the worst, with an ACC of 0.633, SPE of 0.545, and an F1 score of 0.639. The sagittal plane was shown to be the most effective for detecting ACL tears, with the axial MR images also demonstrating significant utility. For meniscal tear detection, the axial plane markedly outperformed the other two planes, and the sagittal plane exhibited the poorest performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen01hang完成签到,获得积分10
刚刚
ZZZ关闭了ZZZ文献求助
刚刚
刚刚
氙氙完成签到,获得积分10
刚刚
plst完成签到,获得积分20
1秒前
小李完成签到,获得积分10
2秒前
2秒前
3秒前
雪白访云完成签到,获得积分10
3秒前
3秒前
roy_chiang完成签到,获得积分0
4秒前
Lucas应助笨笨醉薇采纳,获得10
4秒前
cat完成签到,获得积分10
4秒前
4秒前
4秒前
段祺瑞完成签到,获得积分10
4秒前
kelly发布了新的文献求助10
4秒前
2331547774完成签到,获得积分10
5秒前
coci发布了新的文献求助10
7秒前
7秒前
8秒前
小蘑菇应助小董爱科研采纳,获得10
8秒前
MHN发布了新的文献求助10
8秒前
顾矜应助xmh采纳,获得10
8秒前
9秒前
zah发布了新的文献求助30
9秒前
wxj完成签到,获得积分10
9秒前
qaqa完成签到,获得积分20
9秒前
秋高气爽关注了科研通微信公众号
10秒前
方鹤楠发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
坦率曼梅完成签到,获得积分10
10秒前
雪山飞龙发布了新的文献求助10
11秒前
NexusExplorer应助寒江雪采纳,获得10
11秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
zyyyy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070635
求助须知:如何正确求助?哪些是违规求助? 4291701
关于积分的说明 13371472
捐赠科研通 4111985
什么是DOI,文献DOI怎么找? 2251839
邀请新用户注册赠送积分活动 1256879
关于科研通互助平台的介绍 1189544