Anomaly detection for blueberry data using sparse autoencoder-support vector machine

自编码 异常检测 模式识别(心理学) 计算机科学 支持向量机 特征向量 维数之咒 核(代数) 人工智能 数据点 核方法 异常(物理) 线性子空间 高维数据聚类 数据挖掘 数学 深度学习 聚类分析 物理 几何学 组合数学 凝聚态物理
作者
Dianwen Wei,Jian Zheng,Hongchun Qu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:9: e1214-e1214 被引量:1
标识
DOI:10.7717/peerj-cs.1214
摘要

High-dimensional space includes many subspaces so that anomalies can be hidden in any of them, which leads to obvious difficulties in abnormality detection. Currently, most existing anomaly detection methods tend to measure distances between data points. Unfortunately, the distance between data points becomes more similar as the dimensionality of the input data increases, resulting in difficulties in differentiation between data points. As such, the high dimensionality of input data brings an obvious challenge for anomaly detection. To address this issue, this article proposes a hybrid method of combining a sparse autoencoder with a support vector machine. The principle is that by first using the proposed sparse autoencoder, the low-dimensional features of the input dataset can be captured, so as to reduce its dimensionality. Then, the support vector machine separates abnormal features from normal features in the captured low-dimensional feature space. To improve the precision of separation, a novel kernel is derived based on the Mercer theorem. Meanwhile, to prevent normal points from being mistakenly classified, the upper limit of the number of abnormal points is estimated by the Chebyshev theorem. Experiments on both the synthetic datasets and the UCI datasets show that the proposed method outperforms the state-of-the-art detection methods in the ability of anomaly detection. We find that the newly designed kernel can explore different sub-regions, which is able to better separate anomaly instances from the normal ones. Moreover, our results suggested that anomaly detection models suffer less negative effects from the complexity of data distribution in the space reconstructed by those layered features than in the original space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
113113完成签到,获得积分10
3秒前
Hello应助cc采纳,获得10
3秒前
Jasper应助削皮柚子采纳,获得10
4秒前
研友_VZG7GZ应助congdexxx采纳,获得10
5秒前
胡图图发布了新的文献求助10
6秒前
李锦燕完成签到,获得积分10
7秒前
cjynl发布了新的文献求助30
9秒前
Jasper应助czq采纳,获得10
12秒前
14秒前
15秒前
胡图图完成签到,获得积分10
15秒前
17秒前
搜集达人应助郁金香采纳,获得10
17秒前
刘天宇完成签到 ,获得积分10
19秒前
Clarence发布了新的文献求助10
20秒前
老西瓜完成签到,获得积分10
20秒前
20秒前
炙热安双完成签到,获得积分20
21秒前
Jeamren完成签到,获得积分10
23秒前
cc发布了新的文献求助10
24秒前
miles发布了新的文献求助10
24秒前
天天快乐应助Caramel采纳,获得10
25秒前
背完单词好睡觉完成签到 ,获得积分10
27秒前
luca发布了新的文献求助30
28秒前
斯文麦片完成签到 ,获得积分10
28秒前
29秒前
英姑应助李键刚采纳,获得10
31秒前
star完成签到,获得积分10
37秒前
科研通AI5应助随意采纳,获得10
37秒前
iabai完成签到,获得积分10
38秒前
王大橘完成签到 ,获得积分10
39秒前
cjynl完成签到,获得积分10
39秒前
冯微微完成签到,获得积分10
40秒前
41秒前
挽风风风风完成签到,获得积分10
41秒前
Singularity应助萨卡斯采纳,获得10
42秒前
初夏的风完成签到,获得积分10
43秒前
43秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442