Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker

微震 地震学 地质学 水力压裂 断层(地质) 地震位置 震级(天文学) 诱发地震 检波器 岩土工程 物理 天文
作者
Ruijia Wang,Dikun Yang,Yunfeng Chen,Chenghao Ren
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220220340
摘要

Abstract The development of portable nodal array in the recent years greatly improved the seismic monitoring ability across multiple scales. The dense arrays also directly benefit microseismic monitoring by providing relatively low-cost surface recordings. However, the rapid growth of seismic data is accompanied by the increased demand for efficient seismic phase picking. On the other hand, machine learning-based phase picking techniques achieved high stability and accuracy, showing promising potential to replace human labors and traditional automatic pickers. In this study, we applied a state-of-the-art package on newly collected nodal array data around a hydraulic fracturing well in southwestern China. The array consists of up to 85 nodes with an average station spacing of less than a kilometer. Within the hydraulic fracturing stimulation periods, we detected ∼3000 seismic events with magnitude down to ∼−2. After waveform cross-correlation-based relocation, the 1979 relocated events clearly light up a 1 km long fault structure and several fractures. Furthermore, the frequency–magnitude distribution of the catalog exhibits weak bilinear features with relatively low b-value (0.88) and a moderate coefficient of variation (Cv ∼2). The nature and origin of the observed earthquake cluster are then discussed and defined based on the industrial information, high-resolution earthquake catalog, and basic statistics. Finally, we summarized our experience and provided recommendations for applying similar approaches to other local scale, surface microseismic monitoring scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伢子发布了新的文献求助10
1秒前
ZD完成签到 ,获得积分10
1秒前
pagoda完成签到,获得积分10
1秒前
勤恳的浩阑完成签到,获得积分10
1秒前
追寻电脑发布了新的文献求助10
1秒前
2秒前
共享精神应助yygg采纳,获得10
2秒前
企鹅男孩完成签到,获得积分10
2秒前
二月关注了科研通微信公众号
3秒前
Lucas应助zzx采纳,获得10
3秒前
Wdwpp完成签到 ,获得积分10
4秒前
爱吃火锅发布了新的文献求助10
4秒前
苹果新儿完成签到 ,获得积分10
5秒前
小铃铛发布了新的文献求助10
5秒前
5秒前
星辰大海应助端庄的寄风采纳,获得10
6秒前
科研通AI5应助77采纳,获得10
6秒前
boya完成签到 ,获得积分10
6秒前
8秒前
一只小可爱完成签到,获得积分10
9秒前
9秒前
9527完成签到,获得积分10
9秒前
maox1aoxin应助科研通管家采纳,获得30
9秒前
掌心化雪完成签到,获得积分10
9秒前
长情诗蕾应助科研通管家采纳,获得20
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
boss发布了新的文献求助100
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
10秒前
kkj完成签到,获得积分10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816404
求助须知:如何正确求助?哪些是违规求助? 3359885
关于积分的说明 10405540
捐赠科研通 3077920
什么是DOI,文献DOI怎么找? 1690402
邀请新用户注册赠送积分活动 813770
科研通“疑难数据库(出版商)”最低求助积分说明 767845